Structural Investigations of Plutonium Zirconia-Based Materials Using the Rietveld Method with X-Ray Diffraction

2003 ◽  
Author(s):  
R. C. Belin
2013 ◽  
Vol 212 ◽  
pp. 225-228
Author(s):  
Lucjan Pająk ◽  
Kazimierz J. Ducki ◽  
Lilianna Wojtynek

The influence of prolonged ageing on the kinetics of the precipitation process of the secondary phases in an A-286 type Fe-Ni superalloy has been studied. The samples were subjected to a solution heat treatment at 980°C for 2 h and water quenched, and then aged at temperatures of 715, 750 and 780°C at holding times from 0.5 to 500 h. Structural investigations were conducted using X-ray diffraction methods. The values of the austenite lattice constant were estimated with the use of the cos2θ extrapolation function, and by the Toraya (WPPF) and Rietveld methods. It was found that the largest decrease in the austenite lattice constant took place during the initial period of ageing at all investigated temperatures, which corresponds to the spinodal decomposition of supersaturated austenite and formation of the γ'-Ni3(Al,Ti) intermetallic phase. Good agreement between the values of the austenite lattice constant determined using the extrapolation function and the Rietveld method was found.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


1992 ◽  
Vol 47 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Anja Edelmann ◽  
Sally Brooker ◽  
Norbert Bertel ◽  
Mathias Noltemeyer ◽  
Herbert W. Roesky ◽  
...  

Abstract The Molecular Structures of [2,4,6-(CF3)3C6H2S]2 (1) [2,4,6-Me3C6H2Te]2 and [2-Me2N-4,6-(CF3)2C6H2Te]2 (3) have been determined by X-ray diffraction. Crystal data: 1: orthorhombic, space group P212121, Z = 4, a = 822.3(2), b = 1029.2(2), c = 2526.6(5) pm (2343 observed independent reflexions, R = 0.042); 2: orthorhombic, space group Iba 2, Z = 8, a = 1546.5(2), b = 1578.4(2), c = 1483.9(1) pm (2051 observed independent reflexions, R = 0.030); 3: monoclinic, space group P 21/c, Z = 4, a = 1118.7(1), b = 1536.5(2), c = 1492.6(2) pm, β = 98.97(1)° (3033 observed independent reflexions, R = 0.025).


2013 ◽  
Vol 212 ◽  
pp. 15-20
Author(s):  
Kazimierz J. Ducki ◽  
Jacek Mendala ◽  
Lilianna Wojtynek

The influence of prolonged ageing on the precipitation process of the secondary phases in an Fe-Ni superalloy of A-286 type has been studied. The samples were subjected to a solution heat treatment at 980°C for 2 h and water quenched, and then aged at temperatures of 715, 750 and 780°C at holding times from 0.5 to 500 h. Structural investigations were conducted using TEM and X-ray diffraction methods. The X-ray phase analyses performed on the isolates were obtained by anodic dissolution of the solid samples. After solution heat treatment the alloy has the structure of twinned austenite with a small amount of undissolved precipitates, such as carbide TiC, carbonitride TiC0.3N0.7, nitride TiN0.3, carbosulfide Ti4C2S2, Laves phase Ni2Si, and boride MoB. The application of ageing causes precipitation processes of γ-Ni3(Al,Ti), G (Ni16Ti6Si7), η (Ni3Ti), β (NiTi) and σ (Cr0.46Mo0.40Si0.14) intermetallic phases, as well as the carbide M23C6. It was found that the main phase precipitating during alloy ageing was the γ intermetallic phase.


2018 ◽  
Vol 280 ◽  
pp. 58-64
Author(s):  
Tinesha Selvaraj ◽  
Johar Banjuraizah ◽  
S.F. Khor ◽  
M.N. Mohd Zainol

A facile strategy was proposed to incorporate the dopant Fe into 8YSZ-based material, which can be potentially applied as solid electrode materials for Solid Oxide Fuel Cells (SOFC). In this study, 8YSZ powder was investigated in terms of densification, conductivity and thecrystal structure as a solid electrolytes. Therefore, varying mol% of Fe included 1, 2, and 3 were prepared for investigation. The crystalline structure of the pristine and Fe doped samples were characterized by X-ray diffraction (XRD) and the phase contents were evaluated by using the Rietveld method. Rietveld quantitative phase analysis demonstrates that the monoclinic-ZrO2phase increases (12.8 wt% to 39.7 wt%) as the concentration of Fe increases, while the amount of tetragonal-ZrO2phase drop (40.4 wt% to 11.9 wt%) dramatically. Sintering activity was applied to improve incorporation of the 8YSZ powder and the dopant Fe where the relative density increases from 77% to 92%. Sample YSZ-2Fe has been fitted with CPE equivalent circuit and achieved 6.251 x 10-6S/cm at 300 °C in air. However, it was found that conductivity levels decreased as the mol% of Fe increased. In short, sample YSZ-2Fe ceramic demonstrated good results in terms of densification (92.09%), cubic ZrO2phase (22 wt%) and conductivity 6.251 x 10-6S/cm.


2020 ◽  
Vol 20 (4) ◽  
pp. 205-223
Author(s):  
Fernanda Nepomuceno Costa ◽  
Daniel Véras Ribeiro ◽  
Cléber Marcos Ribeiro Dias

Abstract Efforts to reduce greenhouse gas emissions in the context of sustainable development have intensified, with the development of research aimed at the production of new materials and binders for construction. This article analyzes the influence of pellet geometry in the production of clinkers, with the incorporation of construction waste (CCW). Procedures adapted from the method proposed by Brazilian Portland Cement Association were adopted in studies of laboratory clinkers, in an attempt to simulate the stages of the industrial process. Pellets were prepared with the same formulation, however, with four different geometries: spherical, with diameters of 1 cm, 2 cm and 3 cm, with manual molding, and semi-spherical, with a diameter of 2 cm, using molds of PLA (polylactic acid) printed on a 3D printer to facilitate the molding of the clinkers in a standardized way. Clinkers were characterized mineralogically by x-ray diffraction (XRD) and the Rietveld method was used to quantify the phases. Variations in the quantities of the alite and belite phases were observed depending on the geometry of the pellets, although the same calcination conditions were used. This is probably due to the variation in the surface area (exposure area) and the gradients of the cooling rate.


1997 ◽  
Vol 53 (6) ◽  
pp. 861-869 ◽  
Author(s):  
C. D. Ling ◽  
J. G. Thompson ◽  
S. Schmid ◽  
D. J. Cookson ◽  
R. L. Withers

The structures of the layered intergrowth phases SbIIISb^{\rm V}_xAl-xTiO6 (x \simeq 0, A = Ta, Nb) have been refined by the Rietveld method, using X-ray diffraction data obtained using a synchrotron source. The starting models for these structures were derived from those of Sb^{\rm III}_3Sb^{\rm V}_xA 3−xTiO14 (x = 1.26, A = Ta and x = 0.89, A = Nb), previously solved by single-crystal X-ray diffraction. There were no significant differences between the derived models and the final structures, validating the approach used to obtain the models and confirming that the n = 1 and n = 3 members of the family, Sb^{\rm III}_nSb^{\rm V}_xA n−xTiO4n+2 are part of a structurally homologous series.


Sign in / Sign up

Export Citation Format

Share Document