scholarly journals Erratum: Spin–Orbit and Crystal Field Parameters for the Ground Term of Nd3+ in CaWO4

1971 ◽  
Vol 54 (6) ◽  
pp. 2770-2770
Author(s):  
N. Karayianis ◽  
R. T. Farrar
1977 ◽  
Vol 55 (10) ◽  
pp. 937-942 ◽  
Author(s):  
A. F. Leung ◽  
Ying-Ming Poon

The absorption spectra of UCl5 single crystal were observed in the region between 0.6 and 2.4 μm at room, 77, and 4.2 K temperatures. Five pure electronic transitions were assigned at 11 665, 9772, 8950, 6643, and 4300 cm−1. The energy levels associated with these transitions were identified as the splittings of the 5f1 ground configuration under the influence of the spin–orbit coupling and a crystal field of C2v symmetry. The number of crystal field parameters was reduced by assuming the point-charge model where the positions of the ions were determined by X-ray crystallography. Then, the crystal field parameters and the spin–orbit coupling constant were calculated to be [Formula: see text],[Formula: see text], [Formula: see text], and ξ = 1760 cm−1. The vibronic analysis showed that the 90, 200, and 320 cm−1 modes were similar to the T2u(v6), T1u(v4), and T1u(v3) of an UCl6− octahedron, respectively.


1993 ◽  
Vol 329 ◽  
Author(s):  
Frederick G. Anderson ◽  
H. Weidner ◽  
P. L. Summers ◽  
R. E. Peale ◽  
B. H. T. Chai

AbstractExpanding the crystal field in terms of operators that transform as the irreducible representations of the Td group leads to an intuitive interpretation of the crystal-field parameters. We apply this method to the crystal field experienced by Nd3+ dopants in the laser crystals YLiF4, YVO4, and KLiYF5.


2021 ◽  
Vol 76 (4) ◽  
pp. 299-304
Author(s):  
Fu Chen ◽  
Jian-Rong Yang ◽  
Zi-Fa Zhou

Abstract The electron paramagnetic resonance (EPR) parameters (g factor g i , and hyperfine structure constants A i , with i = x, y, z) and local structures for Cu2+ centers in M2Zn(SO4)2·6H2O (M = NH4 and Rb) are theoretically investigated using the high order perturbation formulas of these EPR parameters for a 3d 9 ion under orthorhombically elongated octahedra. In the calculations, contribution to these EPR parameters due to the admixture of d-orbitals in the ground state wave function of the Cu2+ ion are taken into account based on the cluster approach, and the required crystal-field parameters are estimated from the superposition model which enables correlation of the crystal-field parameters and hence the studied EPR parameters with the local structures of the Cu2+ centers. Based on the calculations, the Cu–H2O bonds are found to suffer the axial elongation ratio δ of about 3 and 2.9% along the z-axis, meanwhile, the planar bond lengths may experience variation ratio τ (≈3.8 and 1%) along x- and y-axis for Cu2+ center in (NH4)2Zn(SO4)2·6H2O and Rb2Zn(SO4)2·6H2O, respectively. The theoretical results show good agreement with the observed values.


2011 ◽  
Vol 255 (23-24) ◽  
pp. 2810-2820 ◽  
Author(s):  
Sebastiano Di Pietro ◽  
Samuele Lo Piano ◽  
Lorenzo Di Bari

2011 ◽  
Vol 25 (21) ◽  
pp. 1779-1785
Author(s):  
MINJIE WANG ◽  
LIANXUAN ZHU ◽  
JIANLIANG DANG

The complete high-order perturbation formulas are established by both crystal-field (CF) and charge-transfer (CT) mechanisms. The EPR g factors of MgTiO 3: Cr 3+, SrTiO 3: Cr 3+ and SrTiO 3: Mn 4+ crystals are calculated from the formulas. The calculations of the EPR g factors are in agreement with the experimental values. The contribution rate of the CT mechanism (|ΔgT/ΔgF|) to EPR parameters, increases with the growth of the valence state for the 3dn ions in the crystals. For the higher valence state 3d3 ion Mn 4+ in crystals, the explanation of the EPR parameters reasonably involves both CF and CT mechanisms. The g values are also given from one-spin-orbit-parameter model and crystal-field (CF) mechanism for comparison.


2011 ◽  
Vol 84 (7) ◽  
Author(s):  
R. V. Pisarev ◽  
A. M. Kalashnikova ◽  
O. Schöps ◽  
L. N. Bezmaternykh

Sign in / Sign up

Export Citation Format

Share Document