Thermal expansion of a glassy alloy studied using a real-space pair distribution function

2006 ◽  
Vol 88 (12) ◽  
pp. 121926 ◽  
Author(s):  
Dmitri V. Louzguine-Luzgin ◽  
Akihisa Inoue ◽  
Alain R. Yavari ◽  
Gavin Vaughan
2020 ◽  
Author(s):  
Anuradha Pallipurath ◽  
Francesco Civati ◽  
Jonathan Skelton ◽  
Dean Keeble ◽  
Clare Crowley ◽  
...  

X-ray pair distribution function analysis is used with first-principles molecular dynamics simulations to study the co-operative H<sub>2</sub>O binding, structural dynamics and host-guest interactions in the channel hydrate of diflunisal.


2020 ◽  
Vol 2 (6) ◽  
pp. 2234-2254 ◽  
Author(s):  
Troels Lindahl Christiansen ◽  
Susan R. Cooper ◽  
Kirsten M. Ø. Jensen

We review the use of pair distribution function analysis for characterization of atomic structure in nanomaterials.


2018 ◽  
Vol 74 (4) ◽  
pp. 293-307 ◽  
Author(s):  
Daniel Olds ◽  
Claire N. Saunders ◽  
Megan Peters ◽  
Thomas Proffen ◽  
Joerg Neuefeind ◽  
...  

Total scattering and pair distribution function (PDF) methods allow for detailed study of local atomic order and disorder, including materials for which Rietveld refinements are not traditionally possible (amorphous materials, liquids, glasses and nanoparticles). With the advent of modern neutron time-of-flight (TOF) instrumentation, total scattering studies are capable of producing PDFs with ranges upwards of 100–200 Å, covering the correlation length scales of interest for many materials under study. Despite this, the refinement and subsequent analysis of data are often limited by confounding factors that are not rigorously accounted for in conventional analysis programs. While many of these artifacts are known and recognized by experts in the field, their effects and any associated mitigation strategies largely exist as passed-down `tribal' knowledge in the community, and have not been concisely demonstrated and compared in a unified presentation. This article aims to explicitly demonstrate, through reviews of previous literature, simulated analysis and real-world case studies, the effects of resolution, binning, bounds, peak shape, peak asymmetry, inconsistent conversion of TOF to d spacing and merging of multiple banks in neutron TOF data as they directly relate to real-space PDF analysis. Suggestions for best practice in analysis of data from modern neutron TOF total scattering instruments when using conventional analysis programs are made, as well as recommendations for improved analysis methods and future instrument design.


2019 ◽  
Vol 52 (5) ◽  
pp. 1072-1076 ◽  
Author(s):  
Frederick Marlton ◽  
Oleh Ivashko ◽  
Martin v. Zimmerman ◽  
Olof Gutowski ◽  
Ann-Christin Dippel ◽  
...  

Total scattering and pair distribution function (PDF) analysis has created new insights that traditional powder diffraction methods have been unable to achieve in understanding the local structures of materials exhibiting disorder or complex nanostructures. Care must be taken in such analyses as subtle and discrete features in the PDF can easily be artefacts generated in the measurement process, which can result in unphysical models and interpretation. The focus of this study is an artefact called the parallax effect, which can occur in area detectors with thick detection layers during the collection of X-ray PDF data. This effect results in high-Q peak offsets, which subsequently cause an r-dependent shift in the PDF peak positions in real space. Such effects should be accounted for if a truly accurate model is to be achieved, and a simple correction that can be conducted via a Rietveld refinement against the reference data is proposed.


2004 ◽  
Vol 37 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Xiangyun Qiu ◽  
Emil S. Božin ◽  
Pavol Juhas ◽  
Thomas Proffen ◽  
Simon J. L. Billinge

An atomic pair distribution function (PDF) neutron powder diffraction round-robin experiment was performed on six diffractometers at three spallation sources. Instrument-specific effects on the real-space PDF were investigated, such as finite measurement range, the instrument resolution and the asymmetric shape of diffraction peaks. Two illustrative samples, a perfectly long-range-ordered element, Pb, and a locally strained alloy ZnSe0.5Te0.5, were measured at low temperatures. Various aspects of the PDF were explored, either qualitatively by direct comparison or quantitativelyviastructural modelling. Future implementation of modelling codes incorporating some of these instrumental effects are also discussed.


2021 ◽  
Author(s):  
Theodosios Famprikis ◽  
Houssny Bouyanfif ◽  
Pieremanuele Canepa ◽  
James Dawson ◽  
Mohamed Zbiri ◽  
...  

Solid electrolytes are crucial for next generation solid state batteries and Na<sub>3</sub>PS<sub>4</sub> is one of the most promising Na<sup>+</sup> conductors for such applications. In this contribution, we present a detailed investigation of the evolution in structure and dynamics of Na<sub>3</sub>PS<sub>4</sub> under the effect of temperature in the range 30 < T < 600 °C through combined experimental-computational analysis. Although x ray Bragg diffraction experiments indicate a second order phase transition from the tetragonal ground state (α, P-42<sub>1</sub>c) to the cubic polymorph (β, I-43m), pair distribution function analysis in real space and Raman spectroscopy indicate remnants of tetragonal character in the range 250 < T < 500 °C which we attribute to dynamic local tetragonal distortions. The first order phase transition to the mesophasic high temperature polymorph (γ, Fddd) is associated with a sharp volume increase and the onset of liquid like diffusive dynamics for sodium-cations (translative) and thiophosphate-polyanions (rotational) evident by inelastic neutron- and Raman- spectroscopies, as well as pair-distribution function and molecular dynamics. These results shed light on the rich polymorphism in Na<sub>3</sub>PS<sub>4</sub> and are relevant for a host of high performance materials deriving from the Na<sub>3</sub>PS<sub>4</sub> structural archetype.<br>


2020 ◽  
Author(s):  
Anuradha Pallipurath ◽  
Francesco Civati ◽  
Jonathan Skelton ◽  
Dean Keeble ◽  
Clare Crowley ◽  
...  

X-ray pair distribution function analysis is used with first-principles molecular dynamics simulations to study the co-operative H<sub>2</sub>O binding, structural dynamics and host-guest interactions in the channel hydrate of diflunisal.


RSC Advances ◽  
2016 ◽  
Vol 6 (24) ◽  
pp. 19903-19909 ◽  
Author(s):  
M. P. Attfield ◽  
M. Feygenson ◽  
J. C. Neuefeind ◽  
T. E. Proffen ◽  
T. C. A. Lucas ◽  
...  

Combined Rietveld refinement and pair distribution function analysis of total neutron scattering data unveils the finer details of the negative thermal expansion mechanism of siliceous faujasite.


2001 ◽  
Vol 63 (16) ◽  
Author(s):  
P. F. Peterson ◽  
Th. Proffen ◽  
I.-K. Jeong ◽  
S. J. L. Billinge ◽  
K.-S. Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document