Structure-film thickness relationship study of sputtered NiO∕Ni bilayers using depth profiling and atomic force microscopy techniques

2006 ◽  
Vol 99 (12) ◽  
pp. 124914 ◽  
Author(s):  
Brian Abbey ◽  
John D. Lipp ◽  
Zoe H. Barber ◽  
Trevor Rayment
2019 ◽  
Vol 10 ◽  
pp. 617-633 ◽  
Author(s):  
Aaron Mascaro ◽  
Yoichi Miyahara ◽  
Tyler Enright ◽  
Omur E Dagdeviren ◽  
Peter Grütter

Recently, there have been a number of variations of electrostatic force microscopy (EFM) that allow for the measurement of time-varying forces arising from phenomena such as ion transport in battery materials or charge separation in photovoltaic systems. These forces reveal information about dynamic processes happening over nanometer length scales due to the nanometer-sized probe tips used in atomic force microscopy. Here, we review in detail several time-resolved EFM techniques based on non-contact atomic force microscopy, elaborating on their specific limitations and challenges. We also introduce a new experimental technique that can resolve time-varying signals well below the oscillation period of the cantilever and compare and contrast it with those previously established.


1996 ◽  
Vol 428 ◽  
Author(s):  
G. O. Ramseyer ◽  
L. H. Walsh ◽  
J. V. Beasock ◽  
H. F. Helbig ◽  
R. C. Lacoe ◽  
...  

AbstractPatterned 930 nm Al(1%-Si) interconnects over 147 nm of Cu were electromigration lifetime tested at 1.0–1.5 × 105 A/cm2 at 250 °C. The morphology of the surfaces of the electromigrated stripes with different line widths and times to failure were characterized by atomic force microscopy, and changes in surface roughness were compared. The diffusion of copper into the electromigrated aluminum stripes was determined by depth profiling using Auger electron spectroscopy. In particular, areas where hillocks formed were examined and compared to areas of median roughness.


Nanoscale ◽  
2021 ◽  
Author(s):  
Adelaide Miranda ◽  
Ana I. Gómez-Varela ◽  
Andreas Stylianou ◽  
Liisa M. Hirvonen ◽  
Humberto Sánchez ◽  
...  

This review provides a detailed picture of the innovative efforts to combine atomic force microscopy and different super-resolution microscopy techniques to elucidate biological questions.


2006 ◽  
Vol 514-516 ◽  
pp. 1598-1602 ◽  
Author(s):  
Sergio Graça ◽  
Rogerio Colaço ◽  
Rui Vilar

When atomic force microscopy is used to retrieve nanomechanical surface properties of materials, unsuspected measurement and instrumentation errors may occur. In this work, some error sources are investigated and operating and correction procedures are proposed in order to maximize the accuracy of the measurements. Experiments were performed on sapphire, Ni, Co and Ni-30%Co samples. A triangular pyramidal diamond tip was used to perform indentation and scratch tests, as well as for surface visualization. It was found that nonlinearities of the z-piezo scanner, in particular the creep of the z-piezo, and errors in the determination of the real dimensions of tested areas, are critical parameters to be considered. However, it was observed that there is a critical load application rate, above which the influence of the creep of the z-piezo can be neglected. Also, it was observed that deconvolution of the tip geometry from the image of the tested area is essential to obtain accurate values of the dimensions of indentations and scratches. The application of these procedures enables minimizing the errors in nanomechanical property measurements using atomic force microscopy techniques.


Sign in / Sign up

Export Citation Format

Share Document