Disturbance of visual search by stimulating to posterior parietal cortex in the brain using transcranial magnetic stimulation

2009 ◽  
Vol 105 (7) ◽  
pp. 07B302
Author(s):  
Keiji Iramina ◽  
Sheng Ge ◽  
Akira Hyodo ◽  
Takehito Hayami ◽  
Shoogo Ueno
2014 ◽  
Vol 111 (4) ◽  
pp. 705-714 ◽  
Author(s):  
Indra T. Mahayana ◽  
Chia-Lun Liu ◽  
Chi Fu Chang ◽  
Daisy L. Hung ◽  
Ovid J. L. Tzeng ◽  
...  

Near- and far-space coding in the human brain is a dynamic process. Areas in dorsal, as well as ventral visual association cortex, including right posterior parietal cortex (rPPC), right frontal eye field (rFEF), and right ventral occipital cortex (rVO), have been shown to be important in visuospatial processing, but the involvement of these areas when the information is in near or far space remains unclear. There is a need for investigations of these representations to help explain the pathophysiology of hemispatial neglect, and the role of near and far space is crucial to this. We used a conjunction visual search task using an elliptical array to investigate the effects of transcranial magnetic stimulation delivered over rFEF, rPPC, and rVO on the processing of targets in near and far space and at a range of horizontal eccentricities. As in previous studies, we found that rVO was involved in far-space search, and rFEF was involved regardless of the distance to the array. It was found that rPPC was involved in search only in far space, with a neglect-like effect when the target was located in the most eccentric locations. No effects were seen for any site for a feature search task. As the search arrays had higher predictability with respect to target location than is often the case, these data may form a basis for clarifying both the role of PPC in visual search and its contribution to neglect, as well as the importance of near and far space in these.


2000 ◽  
Vol 84 (3) ◽  
pp. 1677-1680 ◽  
Author(s):  
Paul Van Donkelaar ◽  
Ji-Hang Lee ◽  
Anthony S. Drew

Recent neurophysiological studies have started to shed some light on the cortical areas that contribute to eye-hand coordination. In the present study we investigated the role of the posterior parietal cortex (PPC) in this process in normal, healthy subjects. This was accomplished by delivering single pulses of transcranial magnetic stimulation (TMS) over the PPC to transiently disrupt the putative contribution of this area to the processing of information related to eye-hand coordination. Subjects made open-loop pointing movements accompanied by saccades of the same required amplitude or by saccades that were substantially larger. Without TMS the hand movement amplitude was influenced by the amplitude of the corresponding saccade; hand movements accompanied by larger saccades were larger than those accompanied by smaller saccades. When TMS was applied over the left PPC just prior to the onset of the saccade, a marked reduction in the saccadic influence on manual motor output was observed. TMS delivered at earlier or later periods during the response had no effect. Taken together, these data suggest that the PPC integrates signals related to saccade amplitude with limb movement information just prior to the onset of the saccade.


2020 ◽  
Vol 31 (1) ◽  
pp. 267-280
Author(s):  
Rossella Breveglieri ◽  
Annalisa Bosco ◽  
Sara Borgomaneri ◽  
Alessia Tessari ◽  
Claudio Galletti ◽  
...  

Abstract Accumulating evidence supports the view that the medial part of the posterior parietal cortex (mPPC) is involved in the planning of reaching, but while plenty of studies investigated reaching performed toward different directions, only a few studied different depths. Here, we investigated the causal role of mPPC (putatively, human area V6A–hV6A) in encoding depth and direction of reaching. Specifically, we applied single-pulse transcranial magnetic stimulation (TMS) over the left hV6A at different time points while 15 participants were planning immediate, visually guided reaching by using different eye-hand configurations. We found that TMS delivered over hV6A 200 ms after the Go signal affected the encoding of the depth of reaching by decreasing the accuracy of movements toward targets located farther with respect to the gazed position, but only when they were also far from the body. The effectiveness of both retinotopic (farther with respect to the gaze) and spatial position (far from the body) is in agreement with the presence in the monkey V6A of neurons employing either retinotopic, spatial, or mixed reference frames during reach plan. This work provides the first causal evidence of the critical role of hV6A in the planning of visually guided reaching movements in depth.


2009 ◽  
Vol 105 (7) ◽  
pp. 07B321 ◽  
Author(s):  
Masakuni Iwahashi ◽  
Yohei Koyama ◽  
Akira Hyodo ◽  
Takehito Hayami ◽  
Shoogo Ueno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document