brain metabolism
Recently Published Documents


TOTAL DOCUMENTS

1035
(FIVE YEARS 133)

H-INDEX

66
(FIVE YEARS 7)

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Ling-Zhuo Kong ◽  
Rui-Li Zhang ◽  
Shao-Hua Hu ◽  
Jian-Bo Lai

AbstractMilitary psychiatry, a new subcategory of psychiatry, has become an invaluable, intangible effect of the war. In this review, we begin by examining related military research, summarizing the related epidemiological data, neuropathology, and the research achievements of diagnosis and treatment technology, and discussing its comorbidity and sequelae. To date, advances in neuroimaging and molecular biology have greatly boosted the studies on military traumatic brain injury (TBI). In particular, in terms of pathophysiological mechanisms, several preclinical studies have identified abnormal protein accumulation, blood–brain barrier damage, and brain metabolism abnormalities involved in the development of TBI. As an important concept in the field of psychiatry, TBI is based on organic injury, which is largely different from many other mental disorders. Therefore, military TBI is both neuropathic and psychopathic, and is an emerging challenge at the intersection of neurology and psychiatry.


Author(s):  
K.I. Avgerinos ◽  
R.J. Mullins ◽  
J.M. Egan ◽  
D. Kapogiannis

BACKGROUND: Ketone bodies have been proposed as an “energy rescue” for the Alzheimer’s disease (AD) brain, which underutilizes glucose. Prior research has shown that oral ketone monoester (KME) safely induces robust ketosis in humans and has demonstrated cognitive-enhancing and pathology-reducing properties in animal models of AD. However, human evidence that KME may enhance brain ketone metabolism, improve cognitive performance and engage AD pathogenic cascades is scarce. Objectives: To investigate the effects of ketone monoester (KME) on brain metabolism, cognitive performance and AD pathogenic cascades in cognitively normal older adults with metabolic syndrome and therefore at higher risk for AD. Design: Double-blinded randomized placebo-controlled clinical trial. Setting: Clinical Unit of the National Institute on Aging, Baltimore, US. Participants: Fifty cognitively intact adults ≥ 55 years old, with metabolic syndrome. Intervention: Drinks containing 25 g of KME or isocaloric placebo consumed three times daily for 28 days. Outcomes: Primary: concentration of beta-hydroxybutyrate (BHB) in precuneus measured with Magnetic Resonance Spectroscopy (MRS). Exploratory: plasma and urine BHB, multiple brain and muscle metabolites detected with MRS, cognition assessed with the PACC and NIH toolbox, biomarkers of AD and metabolic mediators in plasma extracellular vesicles, and stool microbiome. Discussion: This is the first study to investigate the AD-biomarker and cognitive effects of KME in humans. Ketone monoester is safe, tolerable, induces robust ketosis, and animal studies indicate that it can modify AD pathology. By conducting a study of KME in a population at risk for AD, we hope to bridge the existing gap between pre-clinical evidence and the potential for brain-metabolic, pro-cognitive, and anti-Alzheimer’s effects in humans.


GeroScience ◽  
2021 ◽  
Author(s):  
Ines Sanchez-Roman ◽  
Beatriz Ferrando ◽  
Camilla Myrup Holst ◽  
Jonas Mengel-From ◽  
Signe Høi Rasmussen ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Benjamin P. Whatley ◽  
Joel S. Winston ◽  
Luke A. Allen ◽  
Sjoerd B. Vos ◽  
Ashwani Jha ◽  
...  

Objective: To characterize regional brain metabolic differences in patients at high risk of sudden unexpected death in epilepsy (SUDEP), using fluorine-18-fluorodeoxyglucose positron emission tomography (18FDG-PET).Methods: We studied patients with refractory focal epilepsy at high (n = 56) and low (n = 69) risk of SUDEP who underwent interictal 18FDG-PET as part of their pre-surgical evaluation. Binary SUDEP risk was ascertained by thresholding frequency of focal to bilateral tonic-clonic seizures (FBTCS). A whole brain analysis was employed to explore regional differences in interictal metabolic patterns. We contrasted these findings with regional brain metabolism more directly related to frequency of FBTCS.Results: Regions associated with cardiorespiratory and somatomotor regulation differed in interictal metabolism. In patients at relatively high risk of SUDEP, fluorodeoxyglucose (FDG) uptake was increased in the basal ganglia, ventral diencephalon, midbrain, pons, and deep cerebellar nuclei; uptake was decreased in the left planum temporale. These patterns were distinct from the effect of FBTCS frequency, where increasing frequency was associated with decreased uptake in bilateral medial superior frontal gyri, extending into the left dorsal anterior cingulate cortex.Significance: Regions critical to cardiorespiratory and somatomotor regulation and to recovery from vital challenges show altered interictal metabolic activity in patients with frequent FBTCS considered to be at relatively high-risk of SUDEP, and shed light on the processes that may predispose patients to SUDEP.


2021 ◽  
Author(s):  
Marta Mendez-Couz ◽  
Hector Gonzalez-Pardo ◽  
Jorge L Arias ◽  
Nelida M Conejo

Introduction: The neuropeptide Y (NPY) is broadly distributed in the central nervous system (CNS), and it has been related to neuroprotective functions. NPY seems to be an important component to counteract brain damage and cognitive impairment mediated by drugs of abuse and neurodegenerative diseases, and both NPY and its Y2 receptor (Y2R) are highly expressed in the hippocampus, critical for learning and memory. We have recently demonstrated its influence on cognitive functions; however, the specific mechanism and involved brain regions where NPY modulates spatial memory by acting on Y2R remain unclear. Methods: Here, we examined the involvement of the hippocampal NPY Y2R in spatial memory and associated changes in brain metabolism by bilateral administration of the selective antagonist BIIE0246 into the rat dorsal hippocampus. To further evaluate the relationship between memory functions and neuronal activity, we analysed the regional expression of the mitochondrial enzyme cytochrome c oxidase (CCO) as an index of oxidative metabolic capacity in limbic and non-limbic brain regions. Results: The acute blockade of NPY Y2R significantly improved spatial memory recall in rats trained in the Morris water maze that matched metabolic activity changes in spatial memory processing regions. Specifically, CCO activity changes were found in the dentate gyrus of the dorsal hippocampus and CA1 subfield of the ventral hippocampus, the infralimbic region of the PFC and the mammillary bodies. Conclusions: These findings suggest that the NPY hippocampal system, through its Y2R receptor, influences spatial memory recall (retrieval) and exerts control over patterns of brain activation that are relevant for associative learning, probably mediated by Y2R modulation of long-term potentiation and long-term depression.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1661
Author(s):  
Chun-Yi Wu ◽  
Yu-Hsin Lin ◽  
Hsin-Hua Hsieh ◽  
Jia-Jia Lin ◽  
Shin-Lei Peng

The neuroimaging literature indicates that brain structure and function both deteriorate with diabetes, but information on sexual dimorphism in diabetes-related brain alterations is limited. This study aimed to ascertain whether brain metabolism is influenced by sex in an animal model of diabetes. Eleven rats (male, n = 5; female, n = 6) received a single intraperitoneal injection of 70 mg/kg streptozotocin (STZ) to develop diabetes. Another 11 rats (male, n = 5; female, n = 6) received the same amount of solvent through a single intraperitoneal injection. Longitudinal positron emission tomography scans were used to assess cerebral glucose metabolism before and 4 weeks after STZ or solvent administration. Before STZ or solvent injections, there was no evidence of sexual dimorphism in cerebral metabolism (p > 0.05). Compared with healthy control animals, rats with diabetes had significantly decreased brain metabolism in all brain regions (all p < 0.05). In addition, female diabetic rats exhibited further reduction in cerebral metabolism, relative to male diabetic rats (p < 0.05). The results of this study may provide some biological evidence, supporting the existence of a sexual dimorphism in diabetes-related complications.


Sign in / Sign up

Export Citation Format

Share Document