Charged Black Holes with Massive Scalar Field

2009 ◽  
Author(s):  
D. Georgieva ◽  
I. Stefanov ◽  
M. Todorov ◽  
S. Yazadjiev ◽  
Michail D. Todorov ◽  
...  
2000 ◽  
Vol 61 (8) ◽  
Author(s):  
Brett E. Taylor ◽  
William A. Hiscock ◽  
Paul R. Anderson

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Shao-Jun Zhang

AbstractWe study massive scalar field perturbation on Kerr black holes in dynamical Chern–Simons gravity by performing a $$(2+1)$$ ( 2 + 1 ) -dimensional simulation. Object pictures of the wave dynamics in time domain are obtained. The tachyonic instability is found to always occur for any nonzero black hole spin and any scalar field mass as long as the coupling constant exceeds a critical value. The presence of the mass term suppresses or even quench the instability. The quantitative dependence of the onset of the tachyonic instability on the coupling constant, the scalar field mass and the black hole spin is given numerically.


Author(s):  
Bogeun Gwak

Abstract We investigate the strong cosmic censorship conjecture in lukewarm Reissner–Nordström–de Sitter black holes (and Martínez–Troncoso–Zanelli black holes) using the quasinormal resonance of non-minimally coupled massive scalar field. The strong cosmic censorship conjecture is closely related to the stability of the Cauchy horizon governed by the decay rate of the dominant quasinormal mode. Here, dominant modes are obtained in the limits of small and large mass black holes. Then, we connect the modes by using the WKB approximation. In our analysis, the strong cosmic censorship conjecture is valid except in the range of the small-mass limit, in which the dominant mode can be assumed to be that of the de Sitter spacetime. Particularly, the coupling constant and mass of the scalar field determine the decay rate in the small mass range. Therefore, the validity of the strong cosmic censorship conjecture depends on the characteristics of the scalar field.


2014 ◽  
Vol 23 (12) ◽  
pp. 1442014 ◽  
Author(s):  
Carlos A. R. Herdeiro ◽  
Eugen Radu

We show that scalar hair can be added to rotating, vacuum black holes (BHs) of general relativity. These hairy black holes (HBHs) clarify a lingering question concerning gravitational solitons: Whether a BH can be added at the centre of a boson star (BS), as it typically can for other solitons. We argue that it can, but only if it is spinning. The existence of such HBHs is related to the Kerr superradiant instability triggered by a massive scalar field. This connection leads to the following conjecture: a (hairless) BH, which is afflicted by the superradiant instability of a given field, must allow hairy generalizations with that field.


2016 ◽  
Vol 25 (09) ◽  
pp. 1641012
Author(s):  
Carolina L. Benone

Scalar fields can form real bound states around black holes for a specific frequency. In this work, we review the case of a charged and massive scalar field around a charged rotating black hole, in order to find these bound states. We analyze the behavior of these solutions for different parameters and also comment on analytic solutions for certain regimes.


1990 ◽  
Vol 41 (12) ◽  
pp. 3652-3661 ◽  
Author(s):  
Valeria Ferrari ◽  
Basilis C. Xanthopoulos

Sign in / Sign up

Export Citation Format

Share Document