scholarly journals A new spin on black hole hair

2014 ◽  
Vol 23 (12) ◽  
pp. 1442014 ◽  
Author(s):  
Carlos A. R. Herdeiro ◽  
Eugen Radu

We show that scalar hair can be added to rotating, vacuum black holes (BHs) of general relativity. These hairy black holes (HBHs) clarify a lingering question concerning gravitational solitons: Whether a BH can be added at the centre of a boson star (BS), as it typically can for other solitons. We argue that it can, but only if it is spinning. The existence of such HBHs is related to the Kerr superradiant instability triggered by a massive scalar field. This connection leads to the following conjecture: a (hairless) BH, which is afflicted by the superradiant instability of a given field, must allow hairy generalizations with that field.

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Shao-Jun Zhang

AbstractWe study massive scalar field perturbation on Kerr black holes in dynamical Chern–Simons gravity by performing a $$(2+1)$$ ( 2 + 1 ) -dimensional simulation. Object pictures of the wave dynamics in time domain are obtained. The tachyonic instability is found to always occur for any nonzero black hole spin and any scalar field mass as long as the coupling constant exceeds a critical value. The presence of the mass term suppresses or even quench the instability. The quantitative dependence of the onset of the tachyonic instability on the coupling constant, the scalar field mass and the black hole spin is given numerically.


2016 ◽  
Vol 25 (09) ◽  
pp. 1641012
Author(s):  
Carolina L. Benone

Scalar fields can form real bound states around black holes for a specific frequency. In this work, we review the case of a charged and massive scalar field around a charged rotating black hole, in order to find these bound states. We analyze the behavior of these solutions for different parameters and also comment on analytic solutions for certain regimes.


2006 ◽  
Vol 21 (38) ◽  
pp. 2893-2902
Author(s):  
P. I. KURIAKOSE ◽  
V. C. KURIAKOSE

A nontrivial scalar solution, whose source is a massive scalar field with a double-well potential, for a non-rotating Bananas–Teitelboim–Zanelli (BTZ) black hole is obtained with a condition [Formula: see text], where μ is the mass of scalar field and [Formula: see text] the cosmological constant. The stability of solution is also studied. The mass of black hole with a scalar hair is greater than the black hole without hair. The scalar solution proposes a regular horizon which hides the naked singularity.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Daniela D. Doneva ◽  
Lucas G. Collodel ◽  
Christian J. Krüger ◽  
Stoytcho S. Yazadjiev

AbstractIn the present paper we study the onset of the spin-induced scalarization of a Kerr black hole in scalar-Gauss–Bonnet gravity with a massive scalar field. Our approach is based on a $$(2+1)$$ ( 2 + 1 ) time evolution of the relevant linearized scalar field perturbation equation. We examine the region where the Kerr black hole becomes unstable giving rise to new scalarized rotating black holes with a massive scalar field. With increasing of the scalar field mass, the minimum value of the Gauss–Bonnet coupling parameter at which scalarization is possible, increases and thus the instability region shrinks. Interestingly, the introduction of scalar field mass does not change the critical minimal value of the black hole angular momentum $$a_{\mathrm{crit}}/M$$ a crit / M where the instability of the Kerr black hole develops.


2009 ◽  
Author(s):  
D. Georgieva ◽  
I. Stefanov ◽  
M. Todorov ◽  
S. Yazadjiev ◽  
Michail D. Todorov ◽  
...  

2018 ◽  
Vol 27 (11) ◽  
pp. 1843009 ◽  
Author(s):  
Carlos A. R. Herdeiro ◽  
Eugen Radu

We obtain spinning boson star solutions and hairy black holes with synchronized hair in the Einstein–Klein–Gordon model, wherein the scalar field is massive, complex and with a nonminimal coupling to the Ricci scalar. The existence of these hairy black holes in this model provides yet another manifestation of the universality of the synchronization mechanism to endow spinning black holes with hair. We study the variation of the physical properties of the boson stars and hairy black holes with the coupling parameter between the scalar field and the curvature, showing that they are, qualitatively, identical to those in the minimally coupled case. By discussing the conformal transformation to the Einstein frame, we argue that the solutions herein provide new rotating boson star and hairy black hole solutions in the minimally coupled theory, with a particular potential, and that no spherically symmetric hairy black hole solutions exist in the nonminimally coupled theory, under a condition of conformal regularity.


2009 ◽  
Vol 677 (3-4) ◽  
pp. 186-189 ◽  
Author(s):  
Jieci Wang ◽  
Qiyuan Pan ◽  
Songbai Chen ◽  
Jiliang Jing

Sign in / Sign up

Export Citation Format

Share Document