Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

2013 ◽  
Author(s):  
Hideshi Muto ◽  
Yukimitsu Ohshiro ◽  
Katsunori Kawasaki ◽  
Michihiro Oyaizu ◽  
Toshiyuki Hattori
Author(s):  
Yongtao Zhao ◽  
Rui Cheng ◽  
Yuyu Wang ◽  
Xianming Zhou ◽  
Yu Lei ◽  
...  

Abstract Recent research activities relevant to high energy density physics (HEDP) driven by the heavy ion beam at the Institute of Modern Physics, Chinese Academy of Sciences are presented. Radiography of static objects with the fast extracted high energy carbon ion beam from the Cooling Storage Ring is discussed. Investigation of the low energy heavy ion beam and plasma interaction is reported. With HEDP research as one of the main goals, the project HIAF (High Intensity heavy-ion Accelerator Facility), proposed by the Institute of Modern Physics as the 12th five-year-plan of China, is introduced.


2006 ◽  
Vol 24 (4) ◽  
pp. 541-551 ◽  
Author(s):  
F. BECKER ◽  
A. HUG ◽  
P. FORCK ◽  
M. KULISH ◽  
P. NI ◽  
...  

An intense and focused heavy ion beam is a suitable tool to generate high energy density in matter. To compare results with simulations it is essential to know beam parameters as intensity, longitudinal, and transversal profile at the focal plane. Since the beam's energy deposition will melt and evaporate even tungsten, non-intercepting diagnostics are required. Therefore a capacitive pickup with high resolution in both time and space was designed, built and tested at the high temperature experimental area at GSI. Additionally a beam induced fluorescence monitor was investigated for the synchrotron's (SIS-18) energy-regime (60–750 AMeV) and successfully tested in a beam-transfer-line.


Author(s):  
Bibhudutta Rout ◽  
Alexander D. Dymnikov ◽  
Daniel P. Zachry ◽  
Elia V. Eschenazi ◽  
Yongqiang Q. Wang ◽  
...  

2006 ◽  
Vol 39 (17) ◽  
pp. 4743-4747 ◽  
Author(s):  
S Udrea ◽  
N Shilkin ◽  
V E Fortov ◽  
D H H Hoffmann ◽  
J Jacoby ◽  
...  

Author(s):  
Hideshi Muto ◽  
Michihiro Oyaizu ◽  
Katsunori Kawasaki ◽  
Yohsuke Takahashi ◽  
Kohichi Takeuchi ◽  
...  

1986 ◽  
Vol 70 ◽  
Author(s):  
H. Windischmann ◽  
R. W. Collins ◽  
J. M. Cavese

ABSTRACTFilms of a-Si:H were deposited by dual ion beam sputtering using a new configuration in which both the argon and hydrogen beam sources are directed at the silicon target. This geometry also permits independent control of the hydrogen and argon energy and particle flux. Infrared absorption mealurents show that even for high hydrogen concentrations, the 2000 cm-1 Si-H stretching band is dominant. This result is in contrast with the more conventional configuration in which the H soyrce is directed at the substrate, resulting in films with dominant 2100 cm-1 mode. This suggests that the precursors resulting in H-incorporation are different for the two configurations. In fact, IR reflectance and SIMS analysis of the silicon sputtering target reveal hydrogen is incorporated, peaking at about 30 Å below the target surface. A strong increase in the photo and dark dc conductivity occurs as the hydrogen ion enery is reduced below 30 eV, suggesting the importance of preventing high energy back-scattered H ion bombardment of thS film. At a H ion energy of 8eV, the values are 2x10-5 (AM1) and 2x10-9 (ohm-cm-1), respectively. Spectroscopic ellipsometry measurements of films reveal a Si-Si bond packing greater than that of low Hcontent a-Si prepared by LPCVD even up to H contents as high as 24%. Above 25% a microstructural transition is observed, verified by SEM, resulting in an increase in the density of voids, (which appears to be responsible for a sudden drop in the hydrogen-induced compressive stress) and accompanied by a shift in the dominant stretching mode energy.


Sign in / Sign up

Export Citation Format

Share Document