A new approach to investigate leakage current mechanisms in infrared photodiodes from illuminated current-voltage characteristics

2014 ◽  
Vol 116 (8) ◽  
pp. 084502 ◽  
Author(s):  
Vishnu Gopal
2013 ◽  
Vol 717 ◽  
pp. 113-116
Author(s):  
Sani Klinsanit ◽  
Itsara Srithanachai ◽  
Surada Ueamanapong ◽  
Sunya Khunkhao ◽  
Budsara Nararug ◽  
...  

The effect of soft X-ray irradiation to the Schottky diode properties was analyzed in this paper. The built-in voltage, leakage current, and work function of Schottky diode were investigated. The current-voltage characteristics of the Schottky diode are measured at room temperature. After irradiation at 70 keV for 55 seconds the forward current and leakage current are increase slightly. On the other hand, the built-in voltage is decrease from the initial value about 0.12 V. Consequently, this method can cause the Schottky diode has low power consumption. The results show that soft X-ray can improve the characteristics of Schottky diode.


2006 ◽  
Vol 527-529 ◽  
pp. 1167-1170 ◽  
Author(s):  
Vito Raineri ◽  
Fabrizio Roccaforte ◽  
Sebania Libertino ◽  
Alfonso Ruggiero ◽  
V. Massimino ◽  
...  

The defects formation in ion-irradiated 4H-SiC was investigated and correlated with the electrical properties of Schottky diodes. The diodes were irradiated with 1 MeV Si+-ions, at fluences ranging between 1×109cm-2 and 1.8×1013cm-2. After irradiation, the current-voltage characteristics of the diodes showed an increase of the leakage current with increasing ion fluence. The reverse I-V characteristics of the irradiated diodes monitored as a function of the temperature showed an Arrhenius dependence of the leakage, with an activation energy of 0.64 eV. Deep level transient spectroscopy (DLTS) allowed to demonstrate that the Z1/Z2 center of 4H-SiC is the dominant defect in the increase of the leakage current in the irradiated material.


2007 ◽  
Vol 124-126 ◽  
pp. 427-430
Author(s):  
Seong Oh ◽  
Do Soon Kang ◽  
Dae Won Park ◽  
Young Son Choe

Molecular ordering and current-voltage characteristics of vacuum-deposited m-MTDATA(4,4’,4’’-tris[N,-(3-methylphenyl)-N-phenylamino]triphenylamine), widely used as a hole injection material in OLEDs, thin films were investigated. Molecular ordering was induced by thermal annealing under electromagnetic field after deposition of m-MTDATA onto the pre-patterned ITO glass. AFM and XRD analysis were employed to characterize the topology and molecular ordering of m-MTDATA thin films. The XRD and AFM results show that m-MTDATA can be molecularly ordered by means of thermal annealing under electromagnetic field. Thermal annealing at 100°C was desirable to get a high degree of molecular ordering with dendritic grains. It was shown that molecular ordering as well as larger dendritic grains in the thin films influenced on improving the current-voltage characteristics and increasing the leakage current of the ITO/m-MTDATA/Al device. Electromagnetic field improved the surface roughness, as well. It is regarded that Rpv seems more significant than the other roughness parameters. Significantly lower Rpv(peak-to-valley roughness) obtained by both thermal annealing and electromagnetic field resulted in enhancing the stability of the current ITO/m-MTDATA/Al device. Ra(average roughness) and Rrms(root-mean-square roughness), however, did not significantly relate with leakage current.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
P. Pipinys ◽  
V. Lapeika

Temperature-dependent reverse-bias current-voltage characteristics obtained by other researchers for Schottky diodes fabricated on GaN are reinterpreted in terms of phonon-assisted tunneling (PhAT) model. Temperature dependence of reverse-bias leakage current is shown could be caused by the temperature dependence of electron tunneling rate from traps in the metal-semiconductor interface to the conduction band of semiconductor. A good fit of experimental data with the theory is received in a wide temperature range (from 80 K to 500 K) using for calculation the effective mass of 0.222 . and for the phonon energy the value of 70 meV. The temperature and bias voltages dependences of an apparent barrier height (activation energy) are also explicable in the framework of the PhAT model.


2014 ◽  
Vol 28 (16) ◽  
pp. 1450132 ◽  
Author(s):  
J. Sosnowski

In this paper, an elaborated new theoretical model of the interaction of pancake-type vortices with nanosized defects is presented based on the energy gain analysis of the captured pancake vortices in nanosized defects in multilayered HTc superconductors. Current–voltage characteristics have been calculated in static and dynamic cases and compared with experimental data. Dynamical anomalies have been then predicted based on the solution of magnetic diffusion equation, which also well correspond to our previous experimental data.


2018 ◽  
Vol 924 ◽  
pp. 601-604 ◽  
Author(s):  
Gary Dolny ◽  
Yang Sheng ◽  
Yue Fu ◽  
S. Li ◽  
Rahul Radhakrishnan ◽  
...  

The reverse-bias current-voltage characteristics of commercial 1200 V 4H-silicon-carbide junction barrier Schottky (SiC-JBS) rectifiers are studied both experimentally and through numerical simulation. The reverse leakage current measured from physical devices is observed to display both a strong temperature and field dependence. A model is presented to explain the observed behavior based on a combination of trap-assisted tunneling and a thermionic-emission mechanism through a potential barrier located at the metal-SiC interface. The study shows that a two-level trapping model can be necessary to properly explain the measured data. Excellent agreement between the models and the measurements is obtained over a wide range of bias and temperature.


2005 ◽  
Vol 483-485 ◽  
pp. 625-628 ◽  
Author(s):  
Fabio Bergamini ◽  
Francesco Moscatelli ◽  
Mariaconcetta Canino ◽  
Antonella Poggi ◽  
Roberta Nipoti

We report on the electrical characterization of Al+ implanted p+/n 4H-SiC diodes via a planar technology. Hot implantation at 400°C and post implantation annealing at 1600°C and 1650°C in high purity Argon ambient were done for the realization of p+/n diodes. The current voltage characteristics of the p+/n diodes and the resistivity of the implanted layer were measured at room temperature. The majority of the 136 measured diodes had a turn on voltage of 1.75 V for both annealing temperatures. The 1600°C annealed diodes showed an almost exponential forward characteristic with ideality factor equal to 1.4, an average reverse leakage current density equal to (4.8 ± 0.1)×10-9 A/cm2 at –100 V, and a break down voltage between 600 and 900V. The 1650°C annealed diodes often had forward “excess current component” that deviates from the ideal forward exponential trend. The average reverse leakage current density was equal to (2.7 ± 0.5)×10-8 A/cm2 at –100 V, and the breakdown voltage was between 700 and 1000V, i.e. it approached the theoretical value for the epitaxial 4H-SiC layer.


Sign in / Sign up

Export Citation Format

Share Document