Travelling wave solutions of a coupled Korteweg-de Vries-Burgers system

2016 ◽  
Author(s):  
Tanki Motsepa ◽  
Chaudry Masood Khalique
2018 ◽  
Vol 32 (06) ◽  
pp. 1850082
Author(s):  
Ding Guo ◽  
Shou-Fu Tian ◽  
Li Zou ◽  
Tian-Tian Zhang

In this paper, we consider the (3[Formula: see text]+[Formula: see text]1)-dimensional modified Korteweg–de Vries–Kadomtsev–Petviashvili (mKdV-KP) equation, which can be used to describe the nonlinear waves in plasma physics and fluid dynamics. By using solitary wave ansatz in the form of sech[Formula: see text] function and a direct integrating way, we construct the exact bright soliton solutions and the travelling wave solutions of the equation, respectively. Moreover, we obtain its power series solutions with the convergence analysis. It is hoped that our results can provide the richer dynamical behavior of the KdV-type and KP-type equations.


2005 ◽  
Vol 60 (4) ◽  
pp. 221-228 ◽  
Author(s):  
Dengshan Wang ◽  
Hong-Qing Zhang

Abstract In this paper, with the aid of symbolic computation we improve the extended F-expansion method described in Chaos, Solitons and Fractals 22, 111 (2004) to solve the (2+1)-dimensional Korteweg de Vries equation. Using this method, we derive many exact non-travelling wave solutions. These are more general than the previous solutions derived with the extended F-expansion method. They include the Jacobi elliptic function, soliton-like trigonometric function solutions, and so on. Our method can be applied to other nonlinear evolution equations.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Xueqin Wang ◽  
Yadong Shang ◽  
Huahui Di

We consider the Wick-type stochastic Schamel-Korteweg-de Vries equation with variable coefficients in this paper. With the aid of symbolic computation and Hermite transformation, by employing the (G′/G,1/G)-expansion method, we derive the new exact travelling wave solutions, which include hyperbolic and trigonometric solutions for the considered equations.


Sign in / Sign up

Export Citation Format

Share Document