scholarly journals Self-consistent second-order Green’s function perturbation theory for periodic systems

2016 ◽  
Vol 144 (5) ◽  
pp. 054106 ◽  
Author(s):  
Alexander A. Rusakov ◽  
Dominika Zgid
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Luis Hernando ◽  
Yuriko Baba ◽  
Elena Díaz ◽  
Francisco Domínguez-Adame

AbstractWe theoretically address the impact of a random distribution of non-magnetic impurities on the electron states formed at the surface of a topological insulator. The interaction of electrons with the impurities is accounted for by a separable pseudo-potential method that allows us to obtain closed expressions for the density of states. Spectral properties of surface states are assessed by means of the Green’s function averaged over disorder realisations. For comparison purposes, the configurationally averaged Green’s function is calculated by means of two different self-consistent methods, namely the self-consistent Born approximation (SCBA) and the coherent potential approximation (CPA). The latter is often regarded as the best single-site theory for the study of the spectral properties of disordered systems. However, although a large number of works employ the SCBA for the analysis of many-impurity scattering on the surface of a topological insulator, CPA studies of the same problem are scarce in the literature. In this work, we find that the SCBA overestimates the impact of the random distribution of impurities on the spectral properties of surface states compared to the CPA predictions. The difference is more pronounced when increasing the magnitude of the disorder.


2019 ◽  
Vol 3 (2) ◽  
pp. 36
Author(s):  
Ifan Johnston ◽  
Vassili Kolokoltsov

We look at estimates for the Green’s function of time-fractional evolution equations of the form D 0 + * ν u = L u , where D 0 + * ν is a Caputo-type time-fractional derivative, depending on a Lévy kernel ν with variable coefficients, which is comparable to y - 1 - β for β ∈ ( 0 , 1 ) , and L is an operator acting on the spatial variable. First, we obtain global two-sided estimates for the Green’s function of D 0 β u = L u in the case that L is a second order elliptic operator in divergence form. Secondly, we obtain global upper bounds for the Green’s function of D 0 β u = Ψ ( - i ∇ ) u where Ψ is a pseudo-differential operator with constant coefficients that is homogeneous of order α . Thirdly, we obtain local two-sided estimates for the Green’s function of D 0 β u = L u where L is a more general non-degenerate second order elliptic operator. Finally we look at the case of stable-like operator, extending the second result from a constant coefficient to variable coefficients. In each case, we also estimate the spatial derivatives of the Green’s functions. To obtain these bounds we use a particular form of the Mittag-Leffler functions, which allow us to use directly known estimates for the Green’s functions associated with L and Ψ , as well as estimates for stable densities. These estimates then allow us to estimate the solutions to a wide class of problems of the form D 0 ( ν , t ) u = L u , where D ( ν , t ) is a Caputo-type operator with variable coefficients.


2019 ◽  
Vol 220 (1) ◽  
pp. 393-403 ◽  
Author(s):  
Zhi-Wei Wang ◽  
Li-Yun Fu ◽  
Jia Wei ◽  
Wanting Hou ◽  
Jing Ba ◽  
...  

SUMMARY Thermoelasticity extends the classical elastic theory by coupling the fields of particle displacement and temperature. The classical theory of thermoelasticity, based on a parabolic-type heat-conduction equation, is characteristic of an unphysical behaviour of thermoelastic waves with discontinuities and infinite velocities as a function of frequency. A better physical system of equations incorporates a relaxation term into the heat equation; the equations predict three propagation modes, namely, a fast P wave (E wave), a slow thermal P wave (T wave), and a shear wave (S wave). We formulate a second-order tensor Green's function based on the Fourier transform of the thermodynamic equations. It is the displacement–temperature solution to a point (elastic or heat) source. The snapshots, obtained with the derived second-order tensor Green's function, show that the elastic and thermal P modes are dispersive and lossy, which is confirmed by a plane-wave analysis. These modes have similar characteristics of the fast and slow P waves of poroelasticity. Particularly, the thermal mode is diffusive at low thermal conductivities and becomes wave-like for high thermal conductivities.


Sign in / Sign up

Export Citation Format

Share Document