Fractal and Fractional
Latest Publications


TOTAL DOCUMENTS

476
(FIVE YEARS 429)

H-INDEX

11
(FIVE YEARS 8)

Published By Mdpi Ag

2504-3110

2022 ◽  
Vol 6 (1) ◽  
pp. 48
Author(s):  
Najeeb Ullah ◽  
Irfan Ali ◽  
Sardar Muhammad Hussain ◽  
Jong-Suk Ro ◽  
Nazar Khan ◽  
...  

This paper deals with a new subclass of univalent function associated with the right half of the lemniscate of Bernoulli. We have find the upper bound of the Hankel determinant H3(1) for this subclass by applying the Carlson–Shaffer operator to it. The present work also deals with certain properties of this newly defined subclass, such as the upper bound of the Hankel determinant of order 3, the co-efficient estimate, etc.


2022 ◽  
Vol 6 (1) ◽  
pp. 47
Author(s):  
Weijia Zheng ◽  
Runquan Huang ◽  
Ying Luo ◽  
YangQuan Chen ◽  
Xiaohong Wang ◽  
...  

Considering the performance requirements in actual applications, a look-up table based fractional order composite control scheme for the permanent magnet synchronous motor speed servo system is proposed. Firstly, an extended state observer based compensation scheme was adopted to suppress the motor parametric uncertainties and convert the speed servo plant into a double-integrator model. Then, a fractional order proportional-derivative (PDμ) controller was adopted as the speed controller to provide the optimal step response performance for the servo system. A universal look-up table was established to estimate the derivative order of the PDμ controller, according to the optimal samples collected by an improved differential evolution algorithm. With the look-up table, the optimal PDμ controller can be tuned analytically. Simulation and experimental results show that the servo system using the composite control scheme can achieve optimal tracking performance and has robustness to the motor parametric uncertainties and disturbance torques.


2022 ◽  
Vol 6 (1) ◽  
pp. 45
Author(s):  
Ravi P. Agarwal ◽  
Hana Al-Hutami ◽  
Bashir Ahmad

We introduce a new class of boundary value problems consisting of a q-variant system of Langevin-type nonlinear coupled fractional integro-difference equations and nonlocal multipoint boundary conditions. We make use of standard fixed-point theorems to derive the existence and uniqueness results for the given problem. Illustrative examples for the obtained results are also presented.


2022 ◽  
Vol 6 (1) ◽  
pp. 46
Author(s):  
Fouad Othman Mallawi ◽  
Ramandeep Behl ◽  
Prashanth Maroju

There are very few papers that talk about the global convergence of iterative methods with the help of Banach spaces. The main purpose of this paper is to discuss the global convergence of third order iterative method. The convergence analysis of this method is proposed under the assumptions that Fréchet derivative of first order satisfies continuity condition of the Hölder. Finally, we consider some integral equation and boundary value problem (BVP) in order to illustrate the suitability of theoretical results.


2022 ◽  
Vol 6 (1) ◽  
pp. 42
Author(s):  
Soubhagya Kumar Sahoo ◽  
Muhammad Tariq ◽  
Hijaz Ahmad ◽  
Bibhakar Kodamasingh ◽  
Asif Ali Shaikh ◽  
...  

The comprehension of inequalities in convexity is very important for fractional calculus and its effectiveness in many applied sciences. In this article, we handle a novel investigation that depends on the Hermite–Hadamard-type inequalities concerning a monotonic increasing function. The proposed methodology deals with a new class of convexity and related integral and fractional inequalities. There exists a solid connection between fractional operators and convexity because of its fascinating nature in the numerical sciences. Some special cases have also been discussed, and several already-known inequalities have been recaptured to behave well. Some applications related to special means, q-digamma, modified Bessel functions, and matrices are discussed as well. The aftereffects of the plan show that the methodology can be applied directly and is computationally easy to understand and exact. We believe our findings generalise some well-known results in the literature on s-convexity.


2022 ◽  
Vol 6 (1) ◽  
pp. 43
Author(s):  
Weihua Sun ◽  
Shutang Liu

The Julia set is one of the most important sets in fractal theory. The previous studies on Julia sets mainly focused on the properties and graph of a single Julia set. In this paper, activated by the consensus of multi-agent systems, the consensus of Julia sets is introduced. Moreover, two types of the consensus of Julia sets are proposed: one is with a leader and the other is with no leaders. Then, controllers are designed to achieve the consensus of Julia sets. The consensus of Julia sets allows multiple different Julia sets to be coupled. In practical applications, the consensus of Julia sets provides a tool to study the consensus of group behaviors depicted by a Julia set. The simulations illustrate the efficacy of these methods.


2022 ◽  
Vol 6 (1) ◽  
pp. 41
Author(s):  
Ravshan Ashurov ◽  
Yusuf Fayziev

The nonlocal boundary value problem, dtρu(t)+Au(t)=f(t) (0<ρ<1, 0<t≤T), u(ξ)=αu(0)+φ (α is a constant and 0<ξ≤T), in an arbitrary separable Hilbert space H with the strongly positive selfadjoint operator A, is considered. The operator dt on the left hand side of the equation expresses either the Caputo derivative or the Riemann–Liouville derivative; naturally, in the case of the Riemann–Liouville derivatives, the nonlocal boundary condition should be slightly changed. Existence and uniqueness theorems for solutions of the problems under consideration are proved. The influence of the constant α on the existence of a solution to problems is investigated. Inequalities of coercivity type are obtained and it is shown that these inequalities differ depending on the considered type of fractional derivatives. The inverse problems of determining the right-hand side of the equation and the function φ in the boundary conditions are investigated.


2022 ◽  
Vol 6 (1) ◽  
pp. 38
Author(s):  
Ridhwan Reyaz ◽  
Ahmad Qushairi Mohamad ◽  
Yeou Jiann Lim ◽  
Muhammad Saqib ◽  
Sharidan Shafie

Fractional derivatives have been proven to showcase a spectrum of solutions that is useful in the fields of engineering, medical, and manufacturing sciences. Studies on the application of fractional derivatives on fluid flow are relatively new, especially in analytical studies. Thus, geometrical representations for fractional derivatives in the mechanics of fluid flows are yet to be discovered. Nonetheless, theoretical studies will be useful in facilitating future experimental studies. Therefore, the aim of this study is to showcase an analytical solution on the impact of the Caputo-Fabrizio fractional derivative for a magnethohydrodynamic (MHD) Casson fluid flow with thermal radiation and chemical reaction. Analytical solutions are obtained via Laplace transform through compound functions. The obtained solutions are first verified, then analysed. It is observed from the study that variations in the fractional derivative parameter, α, exhibits a transitional behaviour of fluid between unsteady state and steady state. Numerical analyses on skin friction, Nusselt number, and Sherwood number were also analysed. Behaviour of these three properties were in agreement of that from past literature.


2022 ◽  
Vol 6 (1) ◽  
pp. 39
Author(s):  
Christoph Bandt ◽  
Dmitry Mekhontsev

Self-similar sets with the open set condition, the linear objects of fractal geometry, have been considered mainly for crystallographic data. Here we introduce new symmetry classes in the plane, based on rotation by irrational angles. Examples without characteristic directions, with strong connectedness and small complexity, were found in a computer-assisted search. They are surprising since the rotations are given by rational matrices, and the proof of the open set condition usually requires integer data. We develop a classification of self-similar sets by symmetry class and algebraic numbers. Examples are given for various quadratic number fields.


2022 ◽  
Vol 6 (1) ◽  
pp. 40
Author(s):  
Lei Wang ◽  
Xiao Lu ◽  
Lisheng Liu ◽  
Jie Xiao ◽  
Ge Zhang ◽  
...  

Currently, low heat Portland (LHP) cement is widely used in mass concrete structures. The magnesia expansion agent (MgO) can be adopted to reduce the shrinkage of conventional Portland cement-based materials, but very few studies can be found that investigate the influence of MgO on the properties of LHP cement-based materials. In this study, the influences of two types of MgO on the hydration, as well as the shrinkage behavior of LHP cement-based materials, were studied via pore structural and fractal analysis. The results indicate: (1) The addition of reactive MgO (with a reactivity of 50 s and shortened as M50 thereafter) not only extends the induction stage of LHP cement by about 1–2 h, but also slightly increases the hydration heat. In contrast, the addition of weak reactive MgO (with a reactivity of 300 s and shortened as M300 thereafter) could not prolong the induction stage of LHP cement. (2) The addition of 4 wt.%–8 wt.% MgO (by weight of binder) lowers the mechanical property of LHP concrete. Higher dosages of MgO and stronger reactivity lead to a larger reduction in mechanical properties at all of the hydration times studied. M300 favors the strength improvement of LHP concrete at later ages. (3) M50 effectively compensates the shrinkage of LHP concrete at a much earlier time than M300, whereas M300 compensates the long-term shrinkage more effectively than M50. Thus, M300 with an optimal dosage of 8 wt.% is suggested to be applied in mass LHP concrete structures. (4) The addition of M50 obviously refines the pore structures of LHP concrete at 7 days, whereas M300 starts to refine the pore structure at around 60 days. At 360 days, the concretes containing M300 exhibits much finer pore structures than those containing M50. (5) Fractal dimension is closely correlated with the pore structure of LHP concrete. Both pore structure and fractal dimension exhibit weak (or no) correlations with shrinkage of LHP concrete.


Sign in / Sign up

Export Citation Format

Share Document