scholarly journals Thermal shock resistance of multilayer silicon carbide receiver tubes for 800°C molten salt concentrating solar power application

2020 ◽  
Author(s):  
Kenneth M. Armijo ◽  
Matthew Walker ◽  
Joshua Christian ◽  
Dimitri Madden ◽  
Mark Stavig ◽  
...  
2016 ◽  
Vol 881 ◽  
pp. 103-108
Author(s):  
Roberta Monteiro de Mello ◽  
Ana Helena de Almeida Bressiani

The aim of this study was to evaluate the effect of Y2O3:Al2O3 additives and sintering temperature on thermal shock resistance of silicon carbide sintered via liquid phase. Silicon carbide samples containing 10 mol% Y2O3:Al2O3 (1:3 and 1:4) were prepared, compacted and sintered at 1750, 1850 and 1950 °C in a graphite resistive furnace. Thermal shock resistance was evaluated after each thermal cycle performed at 600, 750 and 900 °C followed by abrupt cooling in water. Samples with two Y2O3:Al2O3 proportions did not show major differences when sintered at the same temperature, though, rising the sintering temperature improves Y2O3:Al2O3 modified-SiC thermal shock resistance.


2012 ◽  
Vol 538-541 ◽  
pp. 2277-2280
Author(s):  
You Fu Guo ◽  
Ming Yue Zheng ◽  
Jing Long Bu ◽  
Yue Jun Chen ◽  
Li Xue Yu ◽  
...  

Silicon carbide with diffierent granularity was used as raw material, quartz, silica fume, aluminum powder or alumina was used as additive with dosages of 1% (in mass, similarly hereinafter), 3% and 5%. Silicon carbide refractory material was prepared in oxidizing atmosphere at 1400 °C for 3 h. Performence of samples were researched by measurements of apparent porosity, bulk density, bending strength at room temperature, thermal shock resistance and thermal expansion rate, and analyzed by SEM. The results showed that samples added silica fume have low thermal expansion rate and apparent porosity, high bending strength and bulk density, good thermal shock resistance, compact texture as well. It can be deduced that 5% silica fume plays the excellent role to improve integrated performance of silicon carbide refractory material.


2017 ◽  
Vol 14 (6) ◽  
pp. 1069-1076 ◽  
Author(s):  
Daejong Kim ◽  
Donghee Lee ◽  
Sanghwan Lee ◽  
Kwangheon Park ◽  
Hyeon-Geun Lee ◽  
...  

1994 ◽  
Vol 344 ◽  
Author(s):  
Jeffrey A. Chambers

AbstractAdvanced ceramic materials offer significant thermodynamic efficiency advantages over metals and alloys because of their higher use temperatures. Using ceramic components results in higher temperature industrial processes which convert fuels to energy more efficiently, reducing environmental emissions. Ceramics have always offered high temperature strength and superior corrosion and erosion resistance. However, brittleness, poor thermal shock resistance and catastrophic failure have slowed industrial adoptions of ceramics in environmental applications.This paper will focus on environmental applications of three new advanced ceramic materials that are overcoming these barriers to industrial utilization through improved toughness, reliability, and thermal shock performance. PRD-66, a layered oxide ceramic with outstanding thermal shock resistance and high use temperature with utility in catalyst support, insulation, and hot gas filtration applications, is discussed. Tough silicon carbide fiber reinforced silicon carbide (SiC/SiC) and carbon fiber reinforced silicon carbide (C/SiC) ceramic composites made by chemical vapor infiltration, and silicon carbide particulate reinforced alumina (SiCp/A12O3) composites made through Lanxide Corporation's DIMOX™ directed metal oxidation process are described. Applications of these materials to pollution reduction and energy efficiency in medical and municipal waste incineration, heat management, aluminum remelting, pyrolysis, coal combustion and gasification, catalytic pollution control, and hot gas filtration, will be discussed.


Sign in / Sign up

Export Citation Format

Share Document