scholarly journals A mathematical framework for ejecta cloud dynamics with application to source models and piezoelectric mass measurements

2021 ◽  
Vol 130 (14) ◽  
pp. 144501
Author(s):  
I. L. Tregillis ◽  
Aaron Koskelo
2021 ◽  
Vol 130 (12) ◽  
pp. 124504
Author(s):  
I. L. Tregillis ◽  
Aaron Koskelo ◽  
Alan K. Harrison

2018 ◽  
Vol 41 ◽  
Author(s):  
David Danks

AbstractThe target article uses a mathematical framework derived from Bayesian decision making to demonstrate suboptimal decision making but then attributes psychological reality to the framework components. Rahnev & Denison's (R&D) positive proposal thus risks ignoring plausible psychological theories that could implement complex perceptual decision making. We must be careful not to slide from success with an analytical tool to the reality of the tool components.


Author(s):  
M.G. Hamilton ◽  
T.T. Herskovits ◽  
J.S. Wall

The hemocyanins of molluscs are aggregates of a cylindrical decameric subparticle that assembles into di-, tri-, tetra-, penta-, and larger multi-decameric particles with masses that are multiples of the 4.4 Md decamer. Electron micrographs of these hemocyanins typically show the particles with two profiles: circular representing the cylinder viewed from the end and rectangular representing the side-view of the hollow cylinder.The model proposed by Mellema and Klug from image analysis of a didecameric hemocyanin with the two decamers facing one another with collar (closed) ends outward fits the appearance of side-views of the negatively-stained cylinders. These authors also suggested that there might be caps at the ends. In one of a series of transmission electron microscopic studies of molluscan hemocyanins, Siezen and Van Bruggen supported the Mellema-Klug model, but stated that they had never observed a cap component. With STEM we have tested the end cap hypothesis by direct mass measurements across the end-views of unstained particles.


1990 ◽  
Vol 29 (04) ◽  
pp. 282-288 ◽  
Author(s):  
A. van Oosterom

AbstractThis paper introduces some levels at which the computer has been incorporated in the research into the basis of electrocardiography. The emphasis lies on the modeling of the heart as an electrical current generator and of the properties of the body as a volume conductor, both playing a major role in the shaping of the electrocardiographic waveforms recorded at the body surface. It is claimed that the Forward-Problem of electrocardiography is no longer a problem. Several source models of cardiac electrical activity are considered, one of which can be directly interpreted in terms of the underlying electrophysiology (the depolarization sequence of the ventricles). The importance of using tailored rather than textbook geometry in inverse procedures is stressed.


Author(s):  
Aydar К. Gumerov ◽  
◽  
Rinat M. Karimov ◽  
Robert М. Askarov ◽  
Khiramagomed Sh. Shamilov ◽  
...  

The key factor determining the strength, reliability, service life and fail-safe operation of the main pipeline is its stress-strain state. The purpose of this article is to develop a mathematical framework and methodology for calculating the stress-strain state of a pipeline section laid in complex geotechnical conditions, taking into account all planned and altitude changes and impacts at various points of operation, as well as during repair and after its completion. The mathematical framework is based on differential equations reflecting the equilibrium state of the pipeline, taking into account the features of the sections (configuration, size, initial stress state, acting forces, temperature conditions, interaction with soil, supports, and pipe layers). The equilibrium equations are drawn up in a curvilinear coordinate system – the same one that is used for in-pipe diagnostics. According to the results of the solution, all stress components are determined at each point both along the length of the pipeline and along the circumference of any section. At the same time, transverse and longitudinal forces, bending moments, shearing forces, pipeline displacements relative to the ground and soil response to displacements are determined. As an example, a solution is given using the developed mathematical framework. During the course of calculation, the places where the lower form of the pipe does not touch the ground and the places where the support reaction becomes higher than a predetermined limit are determined. A comparative analysis was accomplished, and the optimal method for section repair has been selected.


2020 ◽  
Vol 227 ◽  
pp. 02012
Author(s):  
R. S. Sidhu ◽  
R. J. Chen ◽  
Yu. A Litvinov ◽  
Y. H. Zhang ◽  

The re-analysis of experimental data on mass measurements of ura- nium fission products obtained at the ESR in 2002 is discussed. State-of-the-art data analysis procedures developed for such measurements are employed.


Sign in / Sign up

Export Citation Format

Share Document