Asymptotics of approximation of continuous periodic functions by linear means of their Fourier series

2020 ◽  
Vol 84 (3) ◽  
pp. 608-624
Author(s):  
R. M. Trigub
Author(s):  
Oleg Novikov ◽  
Olga Rovenska

The paper deals with the problems of approximation in a uniform metric of periodic functions of many variables by trigonometric polynomials, which are generated by linear methods of summation of Fourier series. Questions of asymptotic behavior of the upper bounds of deviations of linear operators generated by the use of linear methods of summation of Fourier series on the classes of periodic differentiable functions are studied in many works. Methods of investigation of integral representations of deviations of polynomials on the classes of periodic differentiable functions of real variable originated and received its development through the works of S.M. Nikol'skii, S.B. Stechkin, N.P.Korneichuk, V.K. Dzadik, A.I. Stepanets, etc. Along with the study of approximation by linear methods of classes of functions of one variable, are studied similar problems of approximation by linear methods of classes of functions of many variables. In addition to the approximative properties of rectangular Fourier sums, are studied approximative properties of other approximation methods: the rectangular sums of Valle Poussin, Zigmund, Rogozinsky, Favar. In this paper we consider the classes of \(\overline{\psi}\)-differentiable periodic functions of many variables, allowing separately to take into account the properties of partial and mixed \(\overline{\psi}\)-derivatives, and given by analogy with the classes of \(\overline{\psi}\)-differentiable periodic functions of one variable. Integral representations of rectangular linear means of Fourier series on classes of \(\overline{\psi}\)-differentiable periodic functions of many variables are obtained. The obtained formulas can be useful for further investigation of the approximative properties of various linear rectangular methods on the classes \(\overline{\psi}\)-differentiable periodic functions of many variables in order to obtain a solution to the corresponding Kolmogorov-Nikolsky problems.


Author(s):  
J. Cossar

SynopsisThe series considered are of the form , where Σ | cn |2 is convergent and the real numbers λn (the exponents) are distinct. It is known that if the exponents are integers, the series is the Fourier series of a periodic function of locally integrable square (the Riesz-Fischer theorem); and more generally that if the exponents are not necessarily integers but are such that the difference between any pair exceeds a fixed positive number, the series is the Fourier series of a function of the Stepanov class, S2, of almost periodic functions.We consider in this paper cases where the exponents are subject to less stringent conditions (depending on the coefficients cn). Some of the theorems included here are known but had been proved by other methods. A fuller account of the contents of the paper is given in Sections 1-5.


Sign in / Sign up

Export Citation Format

Share Document