THE STAG OIL FIELD FORMATION EVALUATION: A NEURAL NETWORK APPROACH

1999 ◽  
Vol 39 (1) ◽  
pp. 451 ◽  
Author(s):  
H. Crocker ◽  
C.C. Fung ◽  
K.W. Wong

The producing M. australis Sandstone of the Stag Oil Field is a bioturbated glauconitic sandstone that is difficult to evaluate using conventional methods. Well log and core data are available for the Stag Field and for the nearby Centaur–1 well. Eight wells have log data; six also have core data.In the past few years artificial intelligence has been applied to formation evaluation. In particular, artificial neural networks (ANN) used to match log and core data have been studied. The ANN approach has been used to analyse the producing Stag Field sands. In this paper, new ways of applying the ANN are reported. Results from simple ANN approach are unsatisfactory. An integrated ANN approach comprising the unsupervised Self-Organising Map (SOM) and the Supervised Back Propagation Neural Network (BPNN) appears to give a more reasonable analysis.In this case study the mineralogical and petrophysical characteristics of a cored well are predicted from the 'training' data set of the other cored wells in the field. The prediction from the ANN model is then used for comparison with the known core data. In this manner, the accuracy of the prediction is determined and a prediction qualifier computed.This new approach to formation evaluation should provide a match between log and core data that may be used to predict the characteristics of a similar uncored interval. Although the results for the Stag Field are satisfactory, further study applying the method to other fields is required.

2013 ◽  
Vol 373-375 ◽  
pp. 1212-1219
Author(s):  
Afrias Sarotama ◽  
Benyamin Kusumoputro

A good model is necessary in order to design a controller of a system off-line. It is especially beneficial in the implementation of new advanced control schemes in Unmanned Aerial Vehicle (UAV). Considering the safety and benefit of an off-line tuning of the UAV controllers, this paper identifies a dynamic MIMO UAV nonlinear system which is derived based on the collection of input-output data taken from a test flights (36250 samples data). These input-output sample flight data are grouped into two flight data sets. The first flight data set, a chirp signal, is used for training the neural network in order to determine parameters (weights) for the network. Validation of the network is performed using the second data set, which is not used for training, and is a representation of UAV circular flight movement. An artificial neural network is trained using the training data set and thereafter the network is excited by the second set input data set. The predicted outputs based on our proposed Neural Network model is similar to the desired outputs (roll, pitch and yaw) which has been produced by real UAV system.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2324 ◽  
Author(s):  
Haiqi Zhang ◽  
Jiahe Cui ◽  
Lihui Feng ◽  
Aiying Yang ◽  
Huichao Lv ◽  
...  

In this letter, we propose an indoor visible light positioning technique using a Modified Momentum Back-Propagation (MMBP) algorithm based on received signal strength (RSS) with sparse training data set. Unlike other neural network algorithms that require a large number of training data points to locate accurately, we have realized high-precision positioning for 100 test points with only 20 training points in a 1.8 m × 1.8 m × 2.1 m localization area. In order to verify the adaptability of the MMBP algorithm, we experimentally demonstrate two different training data acquisition methods adopting either even or arbitrary training sets. In addition, we also demonstrate the positioning accuracy of the traditional RSS algorithm. Experimental results show that the average localization accuracy optimized by our proposed algorithm is only 1.88 cm for the arbitrary set and 1.99 cm for the even set, while the average positioning error of the traditional RSS algorithm reaches 14.34 cm. Comparison indicates that the positioning accuracy of our proposed algorithm is 7.6 times higher. Results also show that the performance of our system is higher than some previous reports based on RSS and RSS fingerprint databases using complex machine learning algorithms trained by a large amount of training points.


2009 ◽  
Vol 610-613 ◽  
pp. 450-453
Author(s):  
Hong Yan Duan ◽  
You Tang Li ◽  
Jin Zhang ◽  
Gui Ping He

The fracture problems of ecomaterial (aluminum alloyed cast iron) under extra-low cycle rotating bending fatigue loading were studied using artificial neural networks (ANN) in this paper. The training data were used in the formation of training set of ANN. The ANN model exhibited excellent in results comparison with the experimental results. It was concluded that predicted fracture design parameters by the trained neural network model seem more reasonable compared to approximate methods. It is possible to claim that, ANN is fairly promising prediction technique if properly used. Training ANN model was introduced at first. And then the Training data for the development of the neural network model was obtained from the experiments. The input parameters, notch depth, the presetting deflection and tip radius of the notch, and the output parameters, the cycle times of fracture were used during the network training. The neural network architecture is designed. The ANN model was developed using back propagation architecture with three layers jump connections, where every layer was connected or linked to every previous layer. The number of hidden neurons was determined according to special formula. The performance of system is summarized at last. In order to facilitate the comparisons of predicted values, the error evaluation and mean relative error are obtained. The result show that the training model has good performance, and the experimental data and predicted data from ANN are in good coherence.


The structure of Electronic Voting Machine (EVM) is an interconnected network of discrete components that record and count the votes of voters. The EVM system consists of four main subsystems which are Mother board of computer, Voting keys, Database storage system, power supply (AC and DC) along with various conditions of functioning as well as deficiency. The deficiency or failure of system is due to its components (hardware), software and human mismanagement. It is essential to reduce complexity of interconnected components and increase system reliability. Reliability analysis helps to identify technical situations that may affect the system and to predict the life of the system in future. The aim of this research paper is to analyze the reliability parameters of an EVM system using one of the approaches of computational intelligence, the neural network (NN). The probabilistic equations of system states and other reliability parameters are established for the proposed EVM model using neural network approach. It is useful for predicting various reliability parameters and improves the accuracy and consistency of parameters. To guarantee the reliability of the system, Back Propagation Neural Network (BPNN) architecture is used to learn a mechanism that can update the weights which produce optimal parameters values. Numerical examples are considered to authenticate the results of reliability, unreliability and profit function. To minimize the error and optimize the output in the form of reliability using gradient descent method, authors iterate repeatedly till the precision of 0.0001 error using MATLAB code. These parameters are of immense help in real time applications of Electronic Voting Machine during elections.


2012 ◽  
Vol 263-266 ◽  
pp. 2173-2178
Author(s):  
Xin Guang Li ◽  
Min Feng Yao ◽  
Li Rui Jian ◽  
Zhen Jiang Li

A probabilistic neural network (PNN) speech recognition model based on the partition clustering algorithm is proposed in this paper. The most important advantage of PNN is that training is easy and instantaneous. Therefore, PNN is capable of dealing with real time speech recognition. Besides, in order to increase the performance of PNN, the selection of data set is one of the most important issues. In this paper, using the partition clustering algorithm to select data is proposed. The proposed model is tested on two data sets from the field of spoken Arabic numbers, with promising results. The performance of the proposed model is compared to single back propagation neural network and integrated back propagation neural network. The final comparison result shows that the proposed model performs better than the other two neural networks, and has an accuracy rate of 92.41%.


2016 ◽  
Vol 7 (1) ◽  
pp. 33-49 ◽  
Author(s):  
Suruchi Chawla

In this paper novel method is proposed using hybrid of Genetic Algorithm (GA) and Back Propagation (BP) Artificial Neural Network (ANN) for learning of classification of user queries to cluster for effective Personalized Web Search. The GA- BP ANN has been trained offline for classification of input queries and user query session profiles to a specific cluster based on clustered web query sessions. Thus during online web search, trained GA –BP ANN is used for classification of new user queries to a cluster and the selected cluster is used for web page recommendations. This process of classification and recommendations continues till search is effectively personalized to the information need of the user. Experiment was conducted on the data set of web user query sessions to evaluate the effectiveness of Personalized Web Search using GA optimized BP ANN and the results confirm the improvement in the precision of search results.


2020 ◽  
Vol 8 (1) ◽  
pp. 40 ◽  
Author(s):  
Qingxi Yang ◽  
Gongbo Li ◽  
Weilei Mu ◽  
Guijie Liu ◽  
Hailiang Sun

The reconstruction algorithm for the probabilistic inspection of damage (RAPID) is aimed at localizing structural damage via the signal difference coefficient (SDC) between the signals of the present and reference conditions. However, tomography is only capable of presenting the approximate location and not the length and angle of defects. Therefore, a new quantitative evaluation method called the multiple back propagation neural network (Multi-BPNN) is proposed in this work. The Multi-BPNN employs SDC values as input variables and outputs the predicted length and angle, with each output node depending on an individual hidden layer. The cracks of different lengths and angles at the center weld seam of offshore platforms are simulated numerically. The SDC values of the simulations and experiments were normalized for each sample to eliminate external interference in the experiments. Then, the normalized simulation data were employed to train the proposed neural network. The results of the simulations and experimental verification indicated that the Multi-BPNN can effectively predict crack length and angle, and has better stability and generalization capacity than the multi-input to multi-output back propagation neural network.


Author(s):  
Rasheed Adekunle Adebayo ◽  
Mehluli Moyo ◽  
Evariste Bosco Gueguim-Kana ◽  
Ignatius Verla Nsahlai

Artificial Neural Network (ANN) and Random Forest models for predicting rumen fill of cattle and sheep were developed. Data on rumen fill were collected from studies that reported body weights, measured rumen fill and stated diets fed to animals. Animal and feed factors that affected rumen fill were identified from each study and used to create a dataset. These factors were used as input variables for predicting the weight of rumen fill. For ANN modelling, a three-layer Levenberg-Marquardt Back Propagation Neural Network was adopted and achieved 96% accuracy in prediction of the weight of rumen fill. The precision of the ANN model’s prediction of rumen fill was higher for cattle (80%) than sheep (56%). On validation, the ANN model achieved 95% accuracy in prediction of the weight of rumen fill. A Random Forest model was trained using a binary tree-based machine-learning algorithm and achieved 87% accuracy in prediction of rumen fill. The Random Forest model achieved 16% (cattle) and 57% (sheep) accuracy in validation of the prediction of rumen fill. In conclusion, the ANN model gave better predictions of rumen fill compared to the Random Forest model and should be used in predicting rumen fill of cattle and sheep.


Sign in / Sign up

Export Citation Format

Share Document