Simultaneous measurements of ammonia volatilisation and deposition at a beef feedlot

2019 ◽  
Vol 59 (1) ◽  
pp. 160 ◽  
Author(s):  
M. R. Redding ◽  
R. Lewis ◽  
P. R. Shorten

The nitrogen (N) excreted at intensive livestock operations is vulnerable to volatilisation, and, subsequently, may form a source of indirect nitrous oxide (N2O) emissions. The present study simultaneously investigated volatilisation and deposition of N at a beef feedlot, semi-continuously over a 129-day period. These data were examined relative to pen manure parameters, management statistics and emission-inventory calculation protocols. Volatilisation measurements were conducted using a single, heated air-sampling inlet, centrally located in a feedlot pen area, with real time concentration analysis via cavity ring-down spectroscopy and backward Lagrangian stochastic (bLS) modelling. Net deposited mineral-N was determined via two transects of soil-deposition traps, with samples collected and re-deployed every 2 weeks. Total volatilised ammonia amounted to 210 tonnes of NH3-N (127 g/animal.day), suggesting that the inventory volatilisation factor probably underestimated volatilisation in this case (inventory, 30% of excreted N; 65 g N volatilised/animal.day; a value of ~60% of excreted N is indicated). Temperature contrast between the manure and air was observed to play a significant role in the rate of emission (R2 = 0.38; 0.46 Kendall’s tau; P < 0.05). Net deposition within 600 m of the pen boundary represented only 1.7% to 3% of volatilised NH4+-N, between 3.6 and 6.7 tonnes N. Beyond this distance, deposition approached background rates (~0.4 kg N/ha.year).

Soil Research ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 165 ◽  
Author(s):  
Ram C. Dalal ◽  
Weijin Wang ◽  
G. Philip Robertson ◽  
William J. Parton

Increases in the concentrations of greenhouse gases, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and halocarbons in the atmosphere due to human activities are associated with global climate change. The concentration of N2O has increased by 16% since 1750. Although atmospheric concentration of N2O is much smaller (314 ppb in 1998) than of CO2 (365 ppm), its global warming potential (cumulative radiative forcing) is 296 times that of the latter in a 100-year time horizon. Currently, it contributes about 6% of the overall global warming effect but its contribution from the agricultural sector is about 16%. Of that, almost 80% of N2O is emitted from Australian agricultural lands, originating from N fertilisers (32%), soil disturbance (38%), and animal waste (30%). Nitrous oxide is primarily produced in soil by the activities of microorganisms during nitrification, and denitrification processes. The ratio of N2O to N2 production depends on oxygen supply or water-filled pore space, decomposable organic carbon, N substrate supply, temperature, and pH and salinity. N2O production from soil is sporadic both in time and space, and therefore, it is a challenge to scale up the measurements of N2O emission from a given location and time to regional and national levels.Estimates of N2O emissions from various agricultural systems vary widely. For example, in flooded rice in the Riverina Plains, N2O emissions ranged from 0.02% to 1.4% of fertiliser N applied, whereas in irrigated sugarcane crops, 15.4% of fertiliser was lost over a 4-day period. Nitrous oxide emissions from fertilised dairy pasture soils in Victoria range from 6 to 11 kg N2O-N/ha, whereas in arable cereal cropping, N2O emissions range from <0.01% to 9.9% of N fertiliser applications. Nitrous oxide emissions from soil nitrite and nitrates resulting from residual fertiliser and legumes are rarely studied but probably exceed those from fertilisers, due to frequent wetting and drying cycles over a longer period and larger area. In ley cropping systems, significant N2O losses could occur, from the accumulation of mainly nitrate-N, following mineralisation of organic N from legume-based pastures. Extensive grazed pastures and rangelands contribute annually about 0.2 kg N/ha as N2O (93 kg/ha per year CO2-equivalent). Tropical savannas probably contribute an order of magnitude more, including that from frequent fires. Unfertilised forestry systems may emit less but the fertilised plantations emit more N2O than the extensive grazed pastures. However, currently there are limited data to quantify N2O losses in systems under ley cropping, tropical savannas, and forestry in Australia. Overall, there is a need to examine the emission factors used in estimating national N2O emissions; for example, 1.25% of fertiliser or animal-excreted N appearing as N2O (IPCC 1996). The primary consideration for mitigating N2O emissions from agricultural lands is to match the supply of mineral N (from fertiliser applications, legume-fixed N, organic matter, or manures) to its spatial and temporal needs by crops/pastures/trees. Thus, when appropriate, mineral N supply should be regulated through slow-release (urease and/or nitrification inhibitors, physical coatings, or high C/N ratio materials) or split fertiliser application. Also, N use could be maximised by balancing other nutrient supplies to plants. Moreover, non-legume cover crops could be used to take up residual mineral N following N-fertilised main crops or mineral N accumulated following legume leys. For manure management, the most effective practice is the early application and immediate incorporation of manure into soil to reduce direct N2O emissions as well as secondary emissions from deposition of ammonia volatilised from manure and urine.Current models such as DNDC and DAYCENT can be used to simulate N2O production from soil after parameterisation with the local data, and appropriate modification and verification against the measured N2O emissions under different management practices.In summary, improved estimates of N2O emission from agricultural lands and mitigation options can be achieved by a directed national research program that is of considerable duration, covers sampling season and climate, and combines different techniques (chamber and micrometeorological) using high precision analytical instruments and simulation modelling, under a range of strategic activities in the agriculture sector.


2001 ◽  
Vol 1 ◽  
pp. 336-342 ◽  
Author(s):  
A AA. Romanovskaya ◽  
A M.L. Gytarsky ◽  
A R.T. Karaban ◽  
A D.E. Konyushkov ◽  
A I.M. Nazarov

The intensity of nitrous oxide (N2O) emission was considered based on literature data on the single input of mineral N (nitrogen) fertilizers into different agricultural soil types in Russia. Ambient environmental factors exert a combined effect on the process of gaseous nitrogen formation from fertilizers applied. To reduce the uncertainty of estimates as much as possible, only experimental results obtained under conditions similar to natural were selected for the assessments. Mineral nitric fertilizers were applied to soil at a rate of 40 to 75 kg/ha and the N2O emissions were measured for approximately 140 days. Daily average emission values varied from 0.08 to 0.45% of fertilizer nitrogen. Correspondingly, 1.26 and 2.38% of fertilizer nitrogen were emitted as N2O from chernozems and soddy podzols. In 1990, the use of fertilizers in Russian agricultural practices for 53 Gg N2O-N, which equates to approximately 6.1% of global nitrous oxide emissions from nitric fertilizers. Later, the emission dropped because of a decrease in the input of nitric fertilizers to agricultural crops, and in 1998, it constituted just 20.5% of the 1990 level. In the period from 2008 to 2012, the nitrous oxide emission is expected to vary from 0.5 to 65.0 Gg N2O-N due to possible changes in national agricultural development. In the most likely scenario, the use of mineral fertilizers in Russia will account for approximately 34 to 40 Gg N2O-N emissions annually from 2008�2012.


2012 ◽  
Vol 9 (12) ◽  
pp. 5007-5022 ◽  
Author(s):  
L. M. Zamora ◽  
A. Oschlies ◽  
H. W. Bange ◽  
K. B. Huebert ◽  
J. D. Craig ◽  
...  

Abstract. The eastern tropical Pacific (ETP) is believed to be one of the largest marine sources of the greenhouse gas nitrous oxide (N2O). Future N2O emissions from the ETP are highly uncertain because oxygen minimum zones are expected to expand, affecting both regional production and consumption of N2O. Here we assess three primary uncertainties in how N2O may respond to changing O2 levels: (1) the relationship between N2O production and O2 (is it linear or exponential at low O2 concentrations?), (2) the cutoff point at which net N2O production switches to net N2O consumption (uncertainties in this parameterisation can lead to differences in model ETP N2O concentrations of more than 20%), and (3) the rate of net N2O consumption at low O2. Based on the MEMENTO database, which is the largest N2O dataset currently available, we find that N2O production in the ETP increases linearly rather than exponentially with decreasing O2. Additionally, net N2O consumption switches to net N2O production at ~ 10 μM O2, a value in line with recent studies that suggest consumption occurs on a larger scale than previously thought. N2O consumption is on the order of 0.01–1 mmol N2O m−3 yr−1 in the Peru-Chile Undercurrent. Based on these findings, it appears that recent studies substantially overestimated N2O production in the ETP. In light of expected deoxygenation and the higher than previously expected point at which net N2O production switches to consumption, there is enough uncertainty in future N2O production that even the sign of future changes is still unclear.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 223
Author(s):  
John Kormla Nyameasem ◽  
Carsten S. Malisch ◽  
Ralf Loges ◽  
Friedhelm Taube ◽  
Christof Kluß ◽  
...  

Nitrous oxide (N2O) emissions from pastures can vary significantly depending on soil and environmental conditions, nitrogen (N) input, as well as the plant’s ability to take up the N. We tested the hypothesis that legume-based N sources are characterized by significantly lower emission factors than mineral N based dairy systems. Therefore, this study monitored N2O emissions for a minimum of 100 days and up to two growing seasons across a gradient of plant species diversity. Emissions were measured from both grazed pastures and a controlled application of urine and dung using the static chamber method. About 90% of the simulated experiments’ accumulated N2O emissions occurred during the first 60–75 days. The average accumulated N2O emissions were 0.11, 0.87, 0.99, and 0.21 kg ha−1 for control, dung, urine patches, and grazed pastures, respectively. The N uptake efficiency at the excreta patch scale was about 70% for both dung and urine. The highest N2O-N emission factor was less than half compared with the IPCC default (0.3 vs. 0.77), suggesting an overestimation of N2O-N emissions from organically managed pastures in temperate climates. Plant diversity showed no significant effect on N2O emission. However, functional groups were significant (p < 0.05). We concluded that legume-containing pasture systems without a fertilizer addition generally appear capable of utilizing nitrogen inputs from excreta patches efficiently, resulting in low N2O emissions.


2020 ◽  
Vol 17 (21) ◽  
pp. 5377-5397
Author(s):  
Najeeb Al-Amin Iddris ◽  
Marife D. Corre ◽  
Martin Yemefack ◽  
Oliver van Straaten ◽  
Edzo Veldkamp

Abstract. Although tree stems act as conduits for greenhouse gases (GHGs) produced in the soil, the magnitudes of tree contributions to total (soil + stem) nitrous oxide (N2O) emissions from tropical rainforests on heavily weathered soils remain unknown. Moreover, soil GHG fluxes are largely understudied in African rainforests, and the effects of land-use change on these gases are identified as an important research gap in the global GHG budget. In this study, we quantified the changes in stem and soil N2O fluxes with forest conversion to cacao agroforestry. Stem and soil N2O fluxes were measured monthly for a year (2017–2018) in four replicate plots per land use at three sites across central and southern Cameroon. Tree stems consistently emitted N2O throughout the measurement period and were positively correlated with soil N2O fluxes. 15N-isotope tracing from soil mineral N to stem-emitted 15N2O and correlations between temporal patterns of stem N2O emissions, soil–air N2O concentration, soil N2O emissions and vapour pressure deficit suggest that N2O emitted by the stems originated predominantly from N2O produced in the soil. Forest conversion to extensively managed, mature (>20 years old) cacao agroforestry had no effect on stem and soil N2O fluxes. The annual total N2O emissions were 1.55 ± 0.20 kg N ha−1 yr−1 from the forest and 1.15 ± 0.10 kg N ha−1 yr−1 from cacao agroforestry, with tree N2O emissions contributing 11 % to 38 % for forests and 8 % to 15 % for cacao agroforestry. These substantial contributions of tree stems to total N2O emissions highlight the importance of including tree-mediated fluxes in ecosystem GHG budgets. Taking into account that our study sites' biophysical characteristics represented two-thirds of the humid rainforests in the Congo Basin, we estimated a total N2O source strength for this region of 0.18 ± 0.05 Tg N2O-N yr−1.


2021 ◽  
Vol 19 (3) ◽  
pp. e0302
Author(s):  
Noemí Mateo-Marín ◽  
Ramón Isla ◽  
Dolores Quílez

Aim of the study: The use of pig slurry as fertiliser is associated with gaseous nitrogen (N) losses, especially ammonia (NH3) and nitrous oxide (N2O), leading to environmental problems and a reduction of its fertiliser value. This study evaluates, in an irrigated wheat crop, the effect of different additives mixed with pig slurry to decrease NH3 and N2O losses.Area of study: Middle Ebro valley, SpainMaterials and methods: The treatments were: i) non-N-fertilised control, ii) pig slurry (PS), iii) pig slurry with the urease inhibitor monocarbamide dihydrogen sulphate (PS-UI), iv) pig slurry with a microbial activator in development (PS-A), and v) pig slurry with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (PS-NI). Pig slurry was applied at a target rate of 120 kg NH4+-N ha-1. Ammonia volatilisation was measured using semi-opened static chambers after treatments application at presowing 2016 and side-dressing 2017. Nitrous oxide emissions were measured using static closed chambers after treatments application at the 2017 and 2018 side-dressing.Main results: Ammonia volatilisation was estimated to be 7-9% and 19-23% of NH4+-N applied after presowing and side-dressing applications, respectively. Additives were not able to reduce NH3 emissions in any application moment. PS-NI was the only treatment being effective in reducing N2O emissions, 70% respect to those in PS treatment. Crop yield parameters were not affected by the application of the additives because of the no effect of additives controlling NH3 losses and the low contribution of N2O losses to the N balance (<1 kg N2O-N ha-1).Research highlights: The use of 3,4-dimethylpyrazole phosphate would be recommended from an environmental perspective, although without grain yield benefits.


2015 ◽  
Vol 39 (2) ◽  
pp. 458-465
Author(s):  
André Carlos Cruz Copetti ◽  
Leandro Souza da Silva ◽  
Gerson Laerson Drescher ◽  
Eduardo Augusto Müller ◽  
Rafael Lago Busanello ◽  
...  

Among the greenhouse gases, nitrous oxide (N2O) is considered important, in view of a global warming potential 296 times greater than that of carbon dioxide (CO2) and its dynamics strongly depend on the availability of C and mineral N in the soil. The understanding of the factors that define emissions is essential to develop mitigation strategies. This study evaluated the dynamics of N2O emissions after the application of different rice straw amounts and nitrate levels in soil solution. Pots containing soil treated with sodium nitrate rates (0, 50 and 100 g kg-1 of NO−3-N) and rice straw levels (0, 5 and 10 Mg ha-1), i.e., nine treatments, were subjected to anaerobic conditions. The results showed that N2O emissions were increased by the addition of greater NO−3 amounts and reduced by large straw quantities applied to the soil. On the 1st day after flooding (DAF), significantly different N2O emissions were observed between the treatments with and without NO−3 addition, when straw had no significant influence on N2O levels. Emissions peaked on the 4th DAF in the treatments with highest NO−3-N addition. At this moment, straw application negatively affected N2O emissions, probably due to NO−3 immobilization. There were also alterations in other soil electrochemical characteristics, e.g., higher straw levels raised the Fe, Mn and dissolved C contents. These results indicate that a lowering of NO−3 concentration in the soil and the increase of straw incorporation can decrease N2O emissions.


2010 ◽  
Vol 7 (3) ◽  
pp. 4539-4563 ◽  
Author(s):  
X. R. Wei ◽  
M. D. Hao ◽  
X. H. Xue ◽  
P. Shi ◽  
A. Wang ◽  
...  

Abstract. Nitrous oxide (N2O) is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L.) field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK), manure (M), nitrogen (N), nitrogen + phosphorus (NP), and nitrogen + phosphorus + manure (NPM). Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, M slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK). Mineral and manure nitrogen fertilizer enhanced N2O emissions in wetter years compared to dryer years. Phosphorous fertilizer offset 0.78 and 1.98 kg N2O ha−1 increases, while manure + phosphorous offset 0.67 and 1.64 kg N2O ha−1 increases by N fertilizer for the two observation years. Our results suggested that the contribution of single N fertilizer on N2O emission was larger than that of NP and NPM and that manure and phosphorous had important roles in offsetting mineral N fertilizer induced N2O emissions. Relative to agricultural production and N2O emission, manure fertilization (M) should be recommended while single N fertilization (N) should be avoided for the highland winter wheat due to the higher biomass and grain yield and less N2O flux and annual emission in M than in N.


2010 ◽  
Vol 7 (10) ◽  
pp. 3301-3310 ◽  
Author(s):  
X. R. Wei ◽  
M. D. Hao ◽  
X. H. Xue ◽  
P. Shi ◽  
R. Horton ◽  
...  

Abstract. Nitrous oxide (N2O) is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L.) field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK), manure (M), nitrogen (N), nitrogen + phosphorus (NP), and nitrogen + phosphorus + manure (NPM). Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, m slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK). Mineral and manure nitrogen fertilizer enhanced N2O emissions in wetter years compared to dryer years. Phosphorous fertilizer offset 0.50 and 1.26 kg N2O-N ha−1 increases, while manure + phosphorous offset 0.43 and 1.04 kg N2O-N ha−1 increases by N fertilizer for the two observation years. Our results suggested that the contribution of single N fertilizer on N2O emission was larger than that of NP and NPM and that manure and phosphorous had important roles in offsetting mineral N fertilizer induced N2O emissions. Relative to agricultural production and N2O emission, manure fertilization (M) should be recommended while single N fertilization (N) should be avoided for the highland winter wheat due to the higher biomass and grain yield and lower N2O flux and annual emission in m than in N.


2020 ◽  
Author(s):  
Najeeb Al-Amin Iddris ◽  
Marife D. Corre ◽  
Martin Yemefack ◽  
Oliver van Straaten ◽  
Edzo Veldkamp

Abstract. Although tree stems act as conduits for greenhouse gases (GHG) produced in the soil, the magnitudes of tree contributions to total (soil + stem) nitrous oxide (N2O) emissions from tropical rainforests on heavily weathered soils remain unknown. Moreover, soil GHG fluxes are largely understudied in African rainforests, and the effects of land-use change on these gases are identified as an important research gap in the global GHG budget. In this study, we quantified the changes in stem and soil N2O fluxes with forest conversion to cacao agroforestry. Stem and soil N2O fluxes were measured monthly for a year (2017–2018) in four replicate plots per land use at three sites across central and southern Cameroon. Tree stems consistently emitted N2O throughout the measurement period, and were positively correlated with soil N2O fluxes. 15N-isotope tracing from soil mineral N to stem-emitted 15N2O as well as correlations between temporal patterns of stem N2O emissions, soil-air N2O concentration, soil N2O emissions, and vapor pressure deficit suggest that N2O emitted by the stems originated predominantly from N2O produced in the soil. Forest conversion to extensively managed, mature (> 20 years old) cacao agroforestry had no effect on stem and soil N2O fluxes. The annual total N2O emissions were 1.55 ± 0.20 kg N ha−1 yr−1 from the forest and 1.15 ± 0.10 kg N ha−1 yr−1 from cacao agroforestry, with tree N2O emissions contributing 1 to 38 % for forests and 8 to 15 % for cacao agroforestry. These substantial contributions of tree stems to total N2O emissions highlight the importance of including tree-mediated fluxes in ecosystem GHG budgets. Taking into account that our study sites’ biophysical characteristics represented two-thirds of the humid rainforests in the Congo Basin, we estimated a total N2O source strength for this region of 0.18 ± 0.05 Tg N2O yr−1.


Sign in / Sign up

Export Citation Format

Share Document