Water balance changes in a crop sequence with lucerne

2001 ◽  
Vol 52 (2) ◽  
pp. 247 ◽  
Author(s):  
F. X. Dunin ◽  
C. J. Smith ◽  
S. J. Zegelin ◽  
R. Leuning

In a detailed study of soil water storage and transport in a sequence of 1 year wheat and 4 years of lucerne, we evaluated drainage under the crop and lucerne as well as additional soil water uptake achieved by the subsequent lucerne phase. The study was performed at Wagga Wagga on a gradational clay soil between 1993 and 1998, during which there was both drought and high amounts of drainage (>10% of annual rainfall) from the rotation. Lucerne removed an additional 125 mm from soil water storage compared with wheat (root-zone of ~1 m), leading to an estimated reduction in drainage to 30–50% of that of rotations comprising solely annual crops and/or pasture. This additional soil water uptake by lucerne was achieved through apparent root extension of 2–2.5 m beyond that of annual crops. It was effective in generating a sink for soil water retention that was about double that of annual crops in this soil. Successful establishment of lucerne at 30 plants/m2 in the first growing season of the pasture phase was a requirement for this root extension. Seasonal water use by lucerne tended to be similar to that of crops in the growing season between May and September, because plant water uptake was confined to the top 1 m of soil. Uptake of water from the subsoil was intermittent over a 2-year period following its successful winter establishment. In each of 2 annual periods, uptake below 1 m soil depth began late in the growing season and terminated in the following autumn. Above-ground dry matter production of lucerne was lower than that by crops grown in the region despite an off-season growth component that was absent under fallow conditions following cropping. This apparent lower productivity of lucerne could be traced in part to greater allocation of assimilate to roots and also to late peak growth rates at high temperatures, which incurred a penalty in terms of lower transpiration efficiency. The shortfall in herbage production by lucerne was offset with the provision of timely, high quality fodder during summer and autumn. Lucerne conferred indirect benefits through nitrogen supply and weed control. Benefits and penalties to the agronomy and hydrology of phase farming systems with lucerne are discussed.

2001 ◽  
Vol 52 (2) ◽  
pp. 305 ◽  
Author(s):  
P. J. Dolling

Rising water tables in southern Western Australia are causing waterlogging and salinity problems. These issues are related to a lower level of water use by annual plants than by the native vegetation. Phalaris can use more water than annual pastures and crops because of deeper rooting characteristics and longer growing season. However, there is limited information on the water use of phalaris in the Western Australian environment. There is also very little information on water balances under annual crops and pastures outside the growing season. A field experiment was carried out on a duplex soil between March 1994 and March 1999. Annual rainfall varied between 321 and 572 mm. The study examined soil water content, deep drainage, and productivity of phalaris-based pasture, continuous annual pasture, annual pasture–wheat rotation, and a wheat–lupin rotation. The results showed that the phalaris-based pasture after the establishment year was 25% (1.9 t dry matter/ha) more productive than continuous annual pasture, with the main difference occurring in late spring–early summer. The phalaris-based pasture used, on average, 45 mm/year more water and reduced drainage below 1 m by 44 mm/year compared with the annual pastures and crops. Total drainage below 1 m was 30 mm under the phalaris-based pasture and 74 mm under annual pasture. The greater water use in the phalaris-based pasture occurred in late spring and early summer. Although differences in total biomass per year occurred between wheat in different rotations there was no difference in the soil water storage prior to the break of the season. There was also no difference in the soil water balance between any of the annual crops and pastures. Differences in soil water storage did occur in some years in October but disappeared by May the following year.


2001 ◽  
Vol 52 (2) ◽  
pp. 263 ◽  
Author(s):  
A. M. Ridley ◽  
B. Christy ◽  
F. X. Dunin ◽  
P. J. Haines ◽  
K. F. Wilson ◽  
...  

Dryland salinity, caused largely by insufficient water use of annual crops and pastures, is increasing in southern Australia. A field experiment in north-eastern Victoria (average annual rainfall 600 mm) assessed the potential for lucerne grown in rotation with crops to reduce the losses of deep drainage compared with annual crops and pasture. Soil under lucerne could store 228 mm of water to 1.8 m depth. This compared with 84 mm under continuous crop (to 1.8 m depth), except in 1997–98 where crop dried soil by 162 mm. Between 1.8 and 3.25 m depth lucerne was able to create a soil water deficit of 78 mm. The extra water storage capacity was due to both the increased rooting depth and increased drying abiliy of lucerne within the root-zone of the annual species. Large drainage losses occurred under annuals in 1996 and small losses were calculated in 1997 and 1999, with no loss in 1998. Averaged over 1996–1999, drainage under annual crops was 49 mm/year (maximum 143 mm) and under annual pastures 35 mm/year (maximum 108 mm). When the extra soil water storage under lucerne was accounted for, no drainage was measured under this treatment in any year. Following 2 years of lucerne, drainage under subsequent crops could occur in the second crop. However, with 3 or 4 years of lucerne, 3–4 crops were grown before drainage loss was likely. Our calculations suggest that in this environment drainage losses are likely to occur under annual species in 55% of years compared with 6% of years under lucerne. In wet years water use of lucerne was higher than for crops due to lucerne’s ability to use summer rainfall and dry soil over the summer–autumn period. During the autumn–winter period crop water use was generally higher than under lucerne. The major period of increased soil water extraction under lucerne was from late spring to midsummer, with additional drying from deeper layers until autumn. Under both lucerne and crops, soil dried progressively from upper to lower soil layers. Short rotations of crops and lucerne currently offer the most practical promise for farmers in cropping areas in southern Australia to restore the water balance to a level which reduces the risk of secondary salinity.


2003 ◽  
Vol 54 (7) ◽  
pp. 663 ◽  
Author(s):  
Mark G. O'Connell ◽  
Garry J. O'Leary ◽  
David J. Connor

A field study investigated drainage and changes in soil water storage below the root-zone of annual crops on a sandy loam soil in the Victorian Mallee for 8 years. It was designed to compare the effects of the common long (18-month) fallow in a 3-year rotation (fallow–wheat–pea, FWP) with a rotation in which the fallow was replaced with mustard (Brassica juncea), viz. mustard–wheat–pea (MWP). Drainage was measured over 2 periods (1993–98 and 1998–2001) using 9 in situ drainage lysimeters in each rotation. The first period of ~5 years was drier than average (mean annual rainfall 298 cf. 339 mm) and drainage was low and variable. Drainage was greater under the fallow rotation (average 0.24 mm/year) than under the non-fallow rotation (average <0.01 mm/year). The result for the fallow rotation did, however, include one lysimeter that recorded substantial drainage (10.6 mm over the 5 years). During the second period of measurement (~3 years), rainfall was above average (mean annual rainfall 356 cf. 339�mm) and drainage was greater. On average, drainage from the fallow rotation was 6.7 mm/year compared with the non-fallow rotation at 4.0 mm/year. There was again substantial variation between lysimeters. One lysimeter under MWP recorded 31.4 mm/year, and as in the earlier drier period, there were many lysimeters that recorded no drainage. During the drier first period (1993–98), changes in soil water storage between 1.5 and 5.5 m depth confirmed the tendency of the fallow rotation to increase deep drainage. Despite increases and decreases in subsoil water storage during the study, the cumulative change in water storage was positive and greatest under FWP (range: 2.8–14.8 mm/year, ave. 9.6 mm/year) compared with MWP (range: 5.3–9.8 mm/year, ave. 7.4 mm/year) cropping sequences. Overall, the long fallow system has the potential to increase deep drainage by approximately 2 mm/year compared with a fully cropped system, over a wide annual rainfall range (134–438 mm). Further, this experiment reinforces the focus for the reduction of fallow practices for dryland salinity control in the Mallee region.


2007 ◽  
Vol 58 (12) ◽  
pp. 1129 ◽  
Author(s):  
K. Verburg ◽  
W. J. Bond ◽  
J. R. Hirth ◽  
A. M. Ridley

The use of a lucerne phase in crop rotations can reduce water lost as drainage past the root zone under dryland agriculture in southern Australia. During the lucerne phase the perenniality of lucerne and its deep rooting ability allow extraction of soil water from below the root zone of annual crops and the creation of a soil water storage buffer against deep water loss. The longevity of the soil water storage buffer depends on rainfall patterns, management of the crops and summer fallows, as well as the magnitude of the buffer created during the lucerne phase. Results from a previously reported field experiment in north-eastern Victoria (average annual rainfall 600 mm) suggested that a 2-year lucerne phase could be insufficient to prevent drainage under subsequent crops for more than 1 year. Computer simulations were used to explore the implications of climatic variability on the creation and refilling of the soil water storage buffer. After first testing that the simulations described the experimental data satisfactorily, they were then used to extend the results and conclusions of the field experiment. These showed that the outcome of the experimental evaluation was affected by the climatic conditions experienced during the experiment and that a lucerne phase duration of 2 years was not appreciably less effective than a 3-year lucerne phase in reducing drainage past 1.8 m (the depth evaluated in the experiment). This conclusion was, however, sensitive to the depth at which drainage was evaluated and also depended on management factors such as the timing of lucerne removal and weed control during the summer fallows. For example, when drainage was evaluated to the maximum depth of lucerne rooting (3.6 m), lucerne was removed in December rather than April, and weeds were permitted, a third year of lucerne allowed a longer cropping phase without refilling of the profile in 47% of years. As a general recommendation a 3-year lucerne phase might, therefore, be an appropriate option for maximising the prevention of drainage. The large variability in the longevity of the soil water storage buffer (from 3 to > 45 months) and its sensitivity to management suggest, however, that it may be more beneficial to link phase changes to local assessment of the status of soil water storage buffer.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Tomás de Figueiredo ◽  
Ana Caroline Royer ◽  
Felícia Fonseca ◽  
Fabiana Costa de Araújo Schütz ◽  
Zulimar Hernández

The European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) product provides soil moisture estimates from radar satellite data with a daily temporal resolution. Despite validation exercises with ground data that have been performed since the product’s launch, SM has not yet been consistently related to soil water storage, which is a key step for its application for prediction purposes. This study aimed to analyse the relationship between soil water storage (S), which was obtained from soil water balance computations with ground meteorological data, and soil moisture, which was obtained from radar data, as affected by soil water storage capacity (Smax). As a case study, a 14-year monthly series of soil water storage, produced via soil water balance computations using ground meteorological data from northeast Portugal and Smax from 25 mm to 150 mm, were matched with the corresponding monthly averaged SM product. Linear (I) and logistic (II) regression models relating S with SM were compared. Model performance (r2 in the 0.8–0.9 range) varied non-monotonically with Smax, with it being the highest at an Smax of 50 mm. The logistic model (II) performed better than the linear model (I) in the lower range of Smax. Improvements in model performance obtained with segregation of the data series in two subsets, representing soil water recharge and depletion phases throughout the year, outlined the hysteresis in the relationship between S and SM.


Sign in / Sign up

Export Citation Format

Share Document