Leaf properties and construction costs of common, co-occurring plant species of disturbed heath forest in Borneo

2004 ◽  
Vol 52 (4) ◽  
pp. 499 ◽  
Author(s):  
Olusegun O. Osunkoya ◽  
Dahliayana Bujang ◽  
Huzaimi Moksin ◽  
Franz L. Wimmer ◽  
Thippeswamy M. Holige

The leaf properties and construction costs (CC) are reported for eight indigenous heath (kerangas)-forest species and three invasive (exotic) species of Acacia. Both groups of species co-occur and colonise disturbed lowland tropical heath-rainforest habitats in Brunei, Borneo Island. Across species, CC mass-based increased with nitrogen (N) and heat of combustion (HC), and decreased with ash content. CC area-based showed similar trends (although weaker in strength) in addition to significant positive correlation with leaf mass per unit area (LMA). Within the native species, the CCs of the shrub and small tree species were lower and significantly different from those of medium-sized tree species. Given the invasive success of the three acacias, it is hypothesised that these species may require less energy for biomass construction than do the native species. Within similar life growth form, no difference in CC mass-based was detected between the native trees and the invasive acacias. For CC area-based, the invasive Acacia species had a higher value. These findings failed to uphold our hypothesis. LMA and leaf N and phosphorus (P), but not potassium (K), were higher in the invasive acacias. The higher N and LMA could have been the cause of higher CC area-based in the invasive acacias. From the ordination of 11 species on the basis of leaf properties, the invasive and native species are more likely to be found in different groupings—although some native species seem more affiliated with the invasive than with their own guild, especially Alphitonia and Macaranga.

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246657
Author(s):  
Giselle Ailin Chichizola ◽  
Sofía Laura Gonzalez ◽  
Adriana Edit Rovere

The introduction of alien species represents one of the greatest threats to biodiversity worldwide. Highway construction increases the dispersal and invasion of exotic plant species. This study examined the assembly process of the plant communities to determine whether the roadsides of the Patagonian steppe represent a reservoir and dispersal source of invasive exotic species. We analyzed the composition of exotic and native species and functional groups present in the established vegetation and seed banks of roadsides and reference areas nearby. The type of dispersal of exotic and native species at the roadsides was also evaluated. Total cover and that of exotic and native species was lower at the roadsides than in the reference areas; however, at the roadsides the cover and seed abundance of exotic species was higher than that of native species. In the roadsides vegetation, native shrubs such as Acaena splendens predominated, along with exotic perennial herbs and grasses which were mainly represented by Rumex acetosella. In the seed bank the predominant species were exotic perennial herbs, also represented by R. acetosella, annual exotic species such as Epilobium brachycarpum and Verbascum thapsus, and annual native species such as Heliotropium paronychioides. No exotic shrubs were found either at the roadsides or in the reference areas. The species at the roadsides did not present a dominant type of dispersal. The abundance of exotic species at the roadsides, both in the aboveground vegetation and the seed bank, may be due to the stressful environment and the characteristics of the species themselves, such as the ability to form seed banks. This work revealed that the roadsides of the Patagonian steppe constitute reservoirs of invasive exotic species, highlighting the importance of identifying them and controlling their spread, with a view to generating ecosystem management programs.


2011 ◽  
Vol 71 (1 suppl 1) ◽  
pp. 327-335 ◽  
Author(s):  
CJR Alho ◽  
J Sabino

The Pantanal's biodiversity constitutes a valuable natural resource, in economic, cultural, recreational, aesthetic, scientific and educational terms. The vegetation plus the seasonal productivity support a diverse and abundant fauna. Many endangered species occur in the region, and waterfowl are exceptionally abundant during the dry season. Losses of biodiversity and its associated natural habitats within the Pantanal occur as a result of unsustainable land use. Implementation of protected areas is only a part of the conservation strategy needed. We analyse biodiversity threats to the biome under seven major categories: 1) conversion of natural vegetation into pasture and agricultural crops, 2) destruction or degradation of habitat mainly due to wild fire, 3) overexploitation of species mainly by unsustainable fishing, 4) water pollution, 5) river flow modification with implantation of small hydroelectric plants, 6) unsustainable tourism, and 7) introduction of invasive exotic species.


2021 ◽  
Author(s):  
Olaniyi O Ajala ◽  
Kathryn R Kidd ◽  
Brian P Oswald ◽  
Yuhui Weng ◽  
Jeremy P Stovall

Abstract A greenhouse experiment was designed to determine the interactive effect of light, flooding, and competition on the growth and performance of Chinese tallow (Triadica sebifera [L.] Roxb.) and three tree species native to the southeastern United States: water tupelo (Nyssa aquatica L.), sugarberry (Celtis occidentalis L.), and green ash (Fraxinus pennsylvanica Marshall). The experiment used a factorial design that received two treatments: light (low irradiance or high irradiance) and flood (nonflooded and flooded) regimes. In the nonflooded and high irradiance treatment, changes in the growth (ground diameter, number of leaves, and total biomass) indicated that growth metrics of tallow were highest when growing with sugarberry and water tupelo but decreased when tallow was in competition with green ash. In contrast, competition with tallow reduced the height, net photosynthetic rate, stomatal conductance, and transpiration rate of water tupelo. The results showed that tallow had lower growth metrics when in competition with green ash at no apparent decrease in the growth of green ash except for growth rate. Our results suggest that tallow may be less competitive with certain native species and underplanting may be a possible opportunity for improving the success rates of native trees species establishment in areas prone to tallow invasion. Study Implications: Chinese tallow is a highly invasive tree species in the southeastern coastal states and in this study, we examined the growth and survival of tallow in competition with tree species native to the southeastern coastal states, USA. The growth of tallow differed greatly among native species in well-drained environments lacking forest overstory with lower growth metrics when grown with green ash but higher growth metrics when grown with water tupelo and sugarberry. Following density reduction treatments, we recommend management actions that promote the regeneration of native tree species to occupy the open vegetation canopy and suppress reestablishment of tallow.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6531 ◽  
Author(s):  
Steven D. Frank ◽  
Kristi M. Backe ◽  
Casey McDaniel ◽  
Matthew Green ◽  
Sarah Widney ◽  
...  

Urban trees serve a critical conservation function by supporting arthropod and vertebrate communities but are often subject to arthropod pest infestations. Native trees are thought to support richer arthropod communities than exotic trees but may also be more susceptible to herbivorous pests. Exotic trees may be less susceptible to herbivores but provide less conservation value as a consequence. We tested the hypotheses that native species in Acer and Quercus would have more herbivorous pests than exotic congeners and different communities of arthropod natural enemies. The density of scale insects, common urban tree pests, was greatest on a native Acer and a native Quercus than exotic congeners in both years of our research (2012 and 2016) and sometimes reached damaging levels. However, differences in predator and parasitoid abundance, diversity, and communities were not consistent between native and exotic species in either genus and were generally similar. For example, in 2012 neither predator nor parasitoid abundance differed among native and exotic Acer congeners but in 2016 a native species, A. saccharum, had the least of both groups. A native, Q. phellos, had significantly more predators and parasitoids in 2012 than its native and exotic congeners but no differences in 2016. Parasitoid communities were significantly different among Acer species and Quercus species due in each case to greater abundance of a single family on one native tree species. These native and exotic tree species could help conserve arthropod natural enemies and achieve pest management goals.


Author(s):  
I. A. Ivanko ◽  
A. F. Kulik

Nowadays, deterioration and loss of ecological functions of urban tree and shrub plantations take place in Europe and, in particular, in Ukraine; it was noted that their number is insufficient to counteract the negative impact of global climate change and protect the population against industrial pollution effects. The issue of resistance of native and adventitious tree species used in the plantations of industrial cities remains relevant; it necessitates the assessment of physiological and biochemical aspects of their adaptation to extreme environmental factors, such as moisture limit in the steppe zone, periodic dangerously low winter temperatures and anthropo-technogenic load (in large urban agglomerations). In order to optimize the assortment of tree species of large megalopolises of the steppe zone of Ukraine and determine their potential resistance to anthropogenic pressures the study was conducted in conditionally clean forest biogeocenoses of the Samara River levee zone and in artificial plantations on the territories located in the coastal zone of the Dnipro River within 1500 m from the Prydneprovskaya thermal electric station (PTES, Dnipro city). It well known that the TPP is the source of atmospheric air pollution by such heavy metals as lead and cadmium. A study of the activity of antioxidant protection enzymes in leaves of native and adventive tree species showed that in the zone of Prydneprovskaya TES impact there was an increase of guaiacol peroxidase activity in Acer platanoides, Ulmus minor, Morus alba; benzidine peroxidase in Acer negundo, Ulmus laevis, Acer platanoides; catalase in A. platanoides, A. negundo, U. laevis, Ulmus pumila and Robinia pseudoasasia. High peroxidase activity, which is complemented by higher catalase activity, indicates the relative resistance of these species to atropo-technogenic pressures supported by antioxidant defense mechanisms. Total chlorophyll content (Chla + Chlb) in leaves of native species Ulmus laevis, Acer platanoides and adventive Morus alba decreased in the zone of TPP impact in relation to conditionally clean areas. The ratio of chlorophyll a to chlorophyll b in contaminated areas significantly increased in leaves of native species Ulmus laevis, Ulmus minor, Acer platanoides compared with control. The invasive species Acer negundo, Morus alba, Ulmus pumila had no significant changes in this indicator. In invasive species such as Ulmus pumila, Acer negundo there was an increase in leaf mass, which may indicate adaptation of these species to anthropogenically altered growth conditions.


Author(s):  
Al-Toukhy s Al-Toukhy s

Particles matters accumulation and anatomical leaf properties of Camphor (Cinnamomum camphora), Henna (Lawsonia inermis), and Bougainvillea (Bougainvillea spectabilis) trees growing in the industrial zone in Jeddah - Saudi Arabia and Hada Al-Shame area (control) was done. The leaf properties of all tree species growing in the industrial and control showed that each stoma had a raised edge over the guard cell region. The guard cells appeared more shrunken on the polluted leaves as compared with unpolluted leave. The results indicated that the most deposition particles on leaf surfaces of all tree species were: soot (C) and soil dust with characteristic matrix elements (Si, Al, Mg, Ca, K); fuel oil particles rich in Al, Si, Ca, and Pb; coal ash particles containing C, Al, Si, K, Ca, S; and Pb. As a result, leaves of those plant species may be used as bio-indicators for the assessment of particular matters in the industrial areas.


Sign in / Sign up

Export Citation Format

Share Document