Interaction of nickel and manganese in uptake, translocation and accumulation by the nickel-hyperaccumulator plant, Alyssum bracteatum (Brassicaceae)

2015 ◽  
Vol 63 (2) ◽  
pp. 47 ◽  
Author(s):  
S. Majid Ghaderian ◽  
Rasoul Ghasemi ◽  
Faeze Hajihashemi

Serpentine soils are often characterised by high concentrations of heavy metals, high plant diversity and endemism, and, in some cases, the presence of plants that hyperaccumulate nickel (Ni). Nickel uptake by hyperaccumulator plants could potentially be affected by other heavy metals in serpentine soils, such as manganese (Mn), which competes for uptake at roots. The present study investigated interactions between Ni and Mn in metal uptake, translocation and storage in a serpentine-endemic Ni-hyperaccumulator plant, Alyssum bracteatum (Brassicaceae), native to western Iran. The results based on a factorial treatment of seedlings using Ni and Mn and elemental analyses showed that whole shoot and root Ni concentrations were inversely correlated with Mn in the growing medium. Likewise, whole shoot and root Mn concentrations were inversely correlated with Ni in the medium, suggesting competition between Ni and Mn for uptake at roots. No evidence was found for competition between Ni and Mn for translocation between the roots and shoot.

2015 ◽  
Vol 63 (2) ◽  
pp. 56 ◽  
Author(s):  
Rasoul Ghasemi ◽  
S. Majid Ghaderian ◽  
Sahar Ebrazeh

The greatest number of nickel (Ni)-hyperaccumulator plants belonging to the genus Alyssum originate from serpentine soils. They possess physiological mechanisms that enable them tolerate very high internal concentrations of Ni. The specificity of these traits has still not been fully clarified; however, by studying the interactions of different metals, some clues may be given. In the present study, the tolerance, uptake, accumulation and interactions of Ni and copper (Cu) were assessed in a range of Alyssum species. A. bracteatum (Harsin and Paveh populations) and A. inflatum were selected as Ni hyperaccumulators from western Iran. A. montanum and A. saxatile were selected as non-accumulators originating from the Mediterranean region, now being used as ornamental plants. Different concentrations of Ni (0, 100 and 250 µM for hyperaccumulators and 0, 10 and 25 µM for the non-accumulator plants), and Cu (0.5, 1 and 2.5 µM) were employed as treatments in a hydroponic growth experiment with a fully randomised factorial design. No tolerance to high concentrations of Cu was observed in any of the species tested. In the presence of Ni, an increased Cu concentration was observed in both roots and shoots of the Ni-hyperaccumulator plants, but not in the non-accumulators. Furthermore, no negative interaction was detected between Ni and Cu in metal uptake by roots, suggesting that different uptake mechanisms are involved. Stimulation of Cu uptake by Ni in the Ni hyperaccumulators hints that this particular feature may be among the characteristics that enable them to hyperaccumulate Ni, unlike their congeneric non-accumulators.


2016 ◽  
Vol 18 (1) ◽  
pp. 214-222 ◽  

<p>Ultramafics represent magmatic or metamorphic rocks which are characterized by high concentrations of Mg, Fe, Ni, Cr and Co and low concentrations of Ca, and K. Serpentine soils are weathered products of a range of ultramafic rocks composed of ferromagnesian silicates. The aim of this study was to determine the content of heavy metals in some of serpentine soils of Kosovo and heavy metals uptake by entire associated flora. Furthermore, another objective of this study was finding out bioavailable Ca/Mg relationship, which is very important indicator for plants&rsquo; development. The sampling was conducted in June 2014. A total of three serpentine areas have been surveyed and 7 soil samples have been taken in various depths of soil profiles. Those samples were analyzed for total Ca, Cd, Co, Cr, Cu, Mn, Ni, Pb, Fe and Zn. Results showed that each site exhibited a high concentration of at least one metal. The maximum concentrations of metals in soils Dry Matter (DM) were 108.9 mg kg<sup>-1</sup> Cd, 95.8 mg kg<sup>-1</sup> Co, 1206 mg kg<sup>-1</sup> Cr, 24 mg kg<sup>-1</sup> Cu, 2570 mg kg<sup>-1</sup> Ni, 21.7 mg kg<sup>-1</sup> Pb, 39 mg kg<sup>-1</sup> Zn, and 51563 mg kg<sup>- </sup>Fe. The serpentine soils at all sites were characterized by elevated levels of heavy metals, which showed typical properties of ultramafic environments. Nickel Total at studied areas varied between 1543 and 2570 mg kg<sup>-1</sup>, while the highest Ni concentration was found in aerial part of Alyssum markgrafii (4038 mgkg<sup>-1</sup>),</p> <div> <p>Based on our findings on the field we concluded that there is a close relationship between the quantity of Ni in soil and Ni uptake in plants.</p> </div> <p>&nbsp;</p>


2021 ◽  
Vol 11 (14) ◽  
pp. 6592
Author(s):  
Ana Moldovan ◽  
Maria-Alexandra Hoaghia ◽  
Anamaria Iulia Török ◽  
Marius Roman ◽  
Ionut Cornel Mirea ◽  
...  

This study aims to investigate the quality and vulnerability of surface water (Aries River catchment) in order to identify the impact of past mining activities. For this purpose, the pollution and water quality indices, Piper and Durov plots, as well vulnerability modeling maps were used. The obtained results indicate that the water samples were contaminated with As, Fe, Mn, Pb and have relatively high concentrations of SO42−, HCO3−, TDS, Ca, K, Mg and high values for the electrical conductivity. Possible sources of the high content of chemicals could be the natural processes or the inputs of the mine drainage. Generally, according to the pollution indices, which were correlated to high concentrations of heavy metals, especially with Pb, Fe and Mn, the water samples were characterized by heavy metals pollution. The water quality index classified the studied water samples into five different classes of quality, namely: unsuitable for drinking, poor, medium, good and excellent quality. Similarly, medium, high and very high vulnerability classes were observed. The Durov and Piper plots classified the waters into Mg-HCO3− and Ca-Cl− types. The past and present mining activities clearly change the water chemistry and alter the quality of the Aries River, with the water requiring specific treatments before use.


Author(s):  
Dulce Montserrat Navarrete Gutiérrez ◽  
A. Joseph Pollard ◽  
Antony van der Ent ◽  
Michel Cathelineau ◽  
Marie-Noëlle Pons ◽  
...  

1970 ◽  
Vol 39 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Ashafaque Ahmed ◽  
Mikael Ohlson ◽  
Sirajul Hoque ◽  
Md Golam Moula

Chemical composition of leaves of Sonneratia apetala Buch.-Ham. collected from three islands (chars) representing three hydrological regimes in a segment of the coastal zone of Bangladesh was studied. Their relations to some soil chemical and physical variables have also been investigated. The results showed that concentrations of B, C, Fe, Ga, Li, Mg, Mn, N, Na, P, Zn and Sr in leaves of S. apetala grown in different islands differed significantly. It was also revealed that some heavy metals, viz. Mn, Fe, Al, Sr and Ti showed wide range of concentrations. The leaves from one of the locations in Motherbunia island were characterized by exceptional high concentrations of heavy metals such as Al, As, Cu, Fe, Li, Ni, Pb that may be due to local contamination. Leaves sampled in the most seaward locations of the same island had highest concentrations of Ba, Ca, Cu, Mn and Na. High Mn concentration was found in the leaves of S. apetala of Motherbunia island. Correlations among soil and plant samples were generally very weak and organic matter content of soil did not appear to play a significant role in the nutrient supply of S. apetala. Key words: Coastal zone; tidal inundation; elemental concentration; Sonneratia apetala DOI: 10.3329/bjb.v39i1.5528Bangladesh J. Bot. 39(1): 61-69, 2010 (June)


2016 ◽  
Vol 6 (12) ◽  
pp. 50-60 ◽  
Author(s):  
Aziza A. Saad ◽  
Amany El-Sikaily ◽  
Hany Kassem

Background. When heavy metals accumulate in air, soil, and water, the risk of human exposure increases among industrial workers, as well as in people living near polluted areas. Heavy metals adversely affect a variety of bodily systems such as the cardiovascular, respiratory, endocrine, immune, and reproductive systems. In addition, long-term exposure and accumulation of heavy metals in the body may disturb oxidative stress genes and thus increase the susceptibility to various diseases. Objectives. The aim of this study is to estimate the metallothionein concentration in both mussel samples from Abu Qir Bay, Egypt and the blood of local fishermen as a biomarker of exposure to metal pollution. Methods. Levels of metallothionein and heavy metals were measured in mussels. Blood levels of metallothionein and heavy metals of local fishermen were measured and compared with a control group. The effect of heavy metal exposure on oxidative stress status was investigated through the determination of malondialdehyde (MDA), catalase and glutathione content. Results. The results of this study showed high concentrations of metallothionein in mussels and in fishermen's blood, accompanied by high concentrations of metals such as cadmium (Cd), copper (Cu), lead (Pb), chromium (Cr), and zinc (Zn). At the same time, a significant decrease in glutathione content and catalase enzyme activity was associated with a significant increase in the malondialdehyde concentrations in sera of fishermen. Conclusions. The present study found that the El Maadiya region is polluted with heavy metals, inducing oxidative stress in fishermen in the vicinity. These results reveal the necessity of further environmental monitoring in the study area in order to evaluate other types of pollutants and their effects on human health.


Author(s):  
CT Nelson ◽  
GT Amangabara ◽  
CO Owuama ◽  
CN Nzeh ◽  
CN Uyo

Open dumpsite is the most common way to eliminate solid urban wastes in this part of the world. An important problem associated to landfills and open dumpsite is the production of leachates. The leachates from these dumpsites have many toxic substances, which may adversely affect the environmental health. Thus in order to have a better management of characteristics of Ihiagwa-Nekede waste dump leachates, representative leachate samples were collected and analyzed for Physico-chemical properties and levels of heavy metals in them. Results indicate pH7.38, temperature 28.30 ℃ - 28.40℃, total dissolved solid 124.01mg/l-125.45mg/l, magnesium hardness 4.40mg/l-7.32mg/l, sulphate 3.60mg/l-3.70mg/l, and nitrate 27.00mg/l-27.60mg/l. Other parameters indicated as follows Conductivity1910𝜇𝑠/𝑐𝑚-1930.00 𝜇𝑠/𝑐𝑚, total chloride 891.72mg/l-891.74mg/l, carbonate 1708.00mg/l-1904.00mg/l, Ammonia 9.39mg/l-9.40mg/l, calcium hardness 373.17mg/l-375.61mg/l, total solid 2423.00mg/l-2454.00mg/l, phosphate 13.52mg/l-13.54mg/l. The heavy metal: cyanide 2.25mg/l-2.33mg/l, zinc 18.08mg/l-18.38mg/l, copper 19.90mg/l20.48mg/l, iron10.67mg/l-10.82mg/l, lead 1.27mg/l-1.41mg/l, and manganese 3.00mg/l-3.61mg/l, all these exceeded the WHO standards. The obtained results showed that the landfill leachates are characterized by high concentrations of heavy metals and other disease causing elements and therefore require urgent treatment to forestall the contamination of groundwater system and the nearby Otamiri River.


1976 ◽  
Vol 13 (12) ◽  
pp. 1683-1693 ◽  
Author(s):  
D. A. Grieve ◽  
W. K. Fletcher

Co, Cu, Fe, Mn, Ni, Pb, and Zn, together with sand content and loss of ignition, have been determined for surflcial sediments from the Fraser River delta-front and upper foreslope. Both geochemical maps and statistical analysis disclose close relationships between trace-metal concentrations, sediment texture, and Fe and Mn content. Detailed studies of the distribution of labile and non-labile trace metals within sediments indicate that these relationships reflect increased concentrations of trace metals associated with both the detrital minerals and hydrous Fe oxides coatings in the finer fractions of the sediment. Abnormally high concentrations of labile trace metals are found on the tidal flats at two stations influenced by discharge of metal-rich sewage.


Sign in / Sign up

Export Citation Format

Share Document