Effects of the diploidisation process upon the 5S and 35S rDNA sequences in the allopolyploid species of the Dilatata group of Paspalum (Poaceae, Paniceae)

2019 ◽  
Vol 67 (7) ◽  
pp. 521
Author(s):  
Magdalena Vaio ◽  
Cristina Mazzella ◽  
Marcelo Guerra ◽  
Pablo Speranza

The Dilatata group of Paspalum includes species and biotypes native to temperate South America. Among them, five sexual allotetraploids (x = 10) share the same IIJJ genome formula: P. urvillei Steud, P. dasypleurum Kunze ex Desv., P. dilatatum subsp. flavescens Roseng., B.R. Arrill. & Izag., and two biotypes P. dilatatum Vacaria and P. dilatatum Virasoro. Previous studies suggested P. intermedium Munro ex Morong & Britton and P. juergensii Hack. or related species as their putative progenitors and donors of the I and J genome, respectively, and pointed to a narrow genetic base for their maternal origin. It has not yet been established whether the various members of the Dilatata group are the result of a single or of multiple allopolyploid formations. Here, we aimed to study the evolutionary dynamics of rRNA genes after allopolyploidisation in the Dilatata group of Paspalum and shed some light into the genome restructuring of the tetraploid taxa with the same genome formula. We used double target fluorescence in situ hybridisation of 35S and 5S rDNA probes and sequenced the nrDNA internal transcribed spacer (ITS) region. A variable number of loci at the chromosome ends were observed for the 35S rDNA, from 2 to 6, suggesting gain and loss of sites. For the 5S rDNA, only one centromeric pair of signals was observed, indicating a remarkable loss after polyploidisation. All ITS sequences generated were near identical to the one found for P. intermedium. Although sequences showed a directional homogeneisation towards the putative paternal progenitor in all tetraploid species, the observed differences in the number and loss of rDNA sites suggest independent ongoing diploidisation processes in all taxa and genome restructuring following polyploidy.

2008 ◽  
Vol 57 (1-6) ◽  
pp. 5-13 ◽  
Author(s):  
P. Chokchaichamnankit ◽  
K. Anamthawat-Jónsson ◽  
W. Chulalaksananukul

Abstract Fifteen species of Fagaceae from Chiang Mai province, northern Thailand, were investigated: eight Castanopsis, four Lithocarpus and three Quercus species. The species were generally diploid with the chromosome number 2n = 24, and the basic number x =12 was confirmed in some species with meiosis. One tree belonging to Q. lenticellatus had 2n = 14. Chromosomal mapping of the highly repetitive 18S-25S and 5S ribosomal genes by fluorescence in situ hybridisation (FISH) was performed. Most species (from all three genera) showed four 18S-25S rDNA sites (two pairs: one subterminal major and one paracentromeric/intercalary minor loci) and two 5S rDNA sites (one pair: paracentromeric locus). Quercus kerrii also had two pairs of 18S-25S rDNA sites, but both were subterminal major loci. Two species, C. argentea and Q. brandisianus, only had one pair of 18S-25S rDNA sites. Two species, C. calathiformis and L. vestitus, showed an odd number of (unpaired) sites, and this indicated hybrid origin and/or polyploidy. Polyploid cells were detected in these species. The ribosomal gene maps based on both sequences together were genus-specific. In Castanopsis, the 18S-25S and the 5S genes were localized on three different chromosome pairs, and comprised species-specific maps. On the other hand, the ribosomal genes in Lithocarpus and Quercus were found only on two chromosome pairs, because one of the two 18S-25S rDNA loci was localized on the same chromosome as the 5S rDNA locus. The FISH markers may be used to clarify discrepancies arising from morphological assessments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caitlin M. Singleton ◽  
Francesca Petriglieri ◽  
Jannie M. Kristensen ◽  
Rasmus H. Kirkegaard ◽  
Thomas Y. Michaelsen ◽  
...  

AbstractMicroorganisms play crucial roles in water recycling, pollution removal and resource recovery in the wastewater industry. The structure of these microbial communities is increasingly understood based on 16S rRNA amplicon sequencing data. However, such data cannot be linked to functional potential in the absence of high-quality metagenome-assembled genomes (MAGs) for nearly all species. Here, we use long-read and short-read sequencing to recover 1083 high-quality MAGs, including 57 closed circular genomes, from 23 Danish full-scale wastewater treatment plants. The MAGs account for ~30% of the community based on relative abundance, and meet the stringent MIMAG high-quality draft requirements including full-length rRNA genes. We use the information provided by these MAGs in combination with >13 years of 16S rRNA amplicon sequencing data, as well as Raman microspectroscopy and fluorescence in situ hybridisation, to uncover abundant undescribed lineages belonging to important functional groups.


2019 ◽  
Vol 20 (11) ◽  
pp. 2848
Author(s):  
Arita Kus ◽  
Joanna Szymanowska-Pułka ◽  
Jolanta Kwasniewska ◽  
Robert Hasterok

Micronuclei are biomarkers of genotoxic effects and chromosomal instability. They are formed when chromosome fragments or whole chromosomes fail to disjoin into daughter nuclei. We present qualitative and quantitative analyses of the involvement of specific chromosome regions of chromosomes Bd4 and Bd5 in the formation of micronuclei of Brachypodium distachyon root tip cells following maleic hydrazide (MH) treatment and X-radiation. This is visualised by cytomolecular approaches using bacterial artificial chromosome (BAC)-based multicolour fluorescence in situ hybridisation (mcFISH) in combination with 5S and 25S rDNA probes. The results showed that the long arm of submetacentric chromosome Bd4 forms micronuclei at twice the frequency of its short arm, suggesting that the former is more prone to double-strand breaks (DSBs). In contrast, no difference was observed in the frequency of micronuclei derived from the long and short arms of submetacentric chromosome Bd5. Interestingly, the proximal region of the short arm of Bd5 is more prone to DSBs than its distal part. This demonstrates that 5S rDNA and 35S rDNA loci are not “hot spots” for DNA breaks after the application of these mutagens.


Genome ◽  
2001 ◽  
Vol 44 (5) ◽  
pp. 911-918 ◽  
Author(s):  
Ki-Byung Lim ◽  
Jannie Wennekes ◽  
J Hans de Jong ◽  
Evert Jacobsen ◽  
Jaap M van Tuyl

Detailed karyotypes of Lilium longiflorum and L. rubellum were constructed on the basis of chromosome arm lengths, C-banding, AgNO3 staining, and PI-DAPI banding, together with fluorescence in situ hybridisation (FISH) with the 5S and 45S rDNA sequences as probes. The C-banding patterns that were obtained with the standard BSG technique revealed only few minor bands on heterologous positions of the L. longiflorum and L. rubellum chromosomes. FISH of the 5S and 45S rDNA probes on L. longiflorum metaphase complements showed overlapping signals at proximal positions of the short arms of chromosomes 4 and 7, a single 5S rDNA signal on the secondary constriction of chromosome 3, and one 45S rDNA signal adjacent to the 5S rDNA signal on the subdistal part of the long arm of chromosome 3. In L. rubellum, we observed co-localisation of the 5S and 45S rDNA sequences on the short arm of chromosomes 2 and 4 and on the long arms of chromosomes 2 and 3, and two adjacent bands on chromosome 12. Silver staining (Ag-NOR) of the nucleoli and NORs in L. longiflorum and L. rubellum yielded a highly variable number of signals in interphase nuclei and only a few faint silver deposits on the NORs of mitotic metaphase chromosomes. In preparations stained with PI and DAPI, we observed both red- and blue-fluorescing bands at different positions on the L. longiflorum and L. rubellum chromosomes. The red-fluorescing or so-called reverse PI-DAPI bands always coincided with rDNA sites, whereas the blue-fluorescing DAPI bands corresponded to C-bands. Based on these techniques, we could identify most of chromosomes of the L. longiflorum and L. rubellum karyotypes.Key words: fluorescence in situ hybridisation, FISH, 5S rDNA, 45S rDNA, C-banding, reverse PI-DAPI banding.


Author(s):  
Ewa Breda ◽  
Elzbieta Wolny ◽  
Robert Hasterok

AbstractThe genus Brachypodium has become the target of extensive cytomolecular studies since one of its representatives, B. distachyon, has been accepted as a model plant for temperate cereals and forage grasses. Recent preliminary studies suggested that intraspecific rDNA polymorphism can occur in at least two members of the genus, B. sylvaticum and B. pinnatum, so the aim of this study was to further analyse this phenomenon. FISH with 25S rDNA and 5S rDNA probes was performed on somatic metaphase chromosomes, supplemented by the silver staining technique which distinguishes transcriptionally active from inactive 18S-5.8S-25S rDNA loci. The number, size and chromosomal distribution of 5S rDNA loci were very constant: two loci were invariably observed in all studied diploid accessions of both species, while four 5S rDNA loci were present in the tetraploid B. pinnatum. In contrast to 5S rDNA loci, those of the 35S rDNA were more variable. Two or three loci were observed in the diploid B. pinnatum and four in tetraploid accessions. In chromosome complements of B. sylvaticum accessions from two to six 35S rDNA sites were detected. Regardless of total rDNA locus number, only two were transcriptionally active in diploid accessions of both species, while two or four were active in the tetraploid B. pinnatum. Additionally, the fluorescent CMA/DAPI banding method was used to identify the relation between rDNA sites and CMA+ bands. It was revealed that the number and chromosomal distribution of CMA+ bands are in congruence only with 35S rDNA loci which gave strong FISH signals.


Genome ◽  
2011 ◽  
Vol 54 (9) ◽  
pp. 718-726 ◽  
Author(s):  
Mateus Mondin ◽  
Margarida L.R. Aguiar-Perecin

Most Crotalaria species display a symmetric karyotype with 2n = 16, but 2n = 14 is found in Chrysocalycinae subsection Incanae and 2n = 32 in American species of the section Calycinae. Seven species of the sections Chrysocalycinae, Calycinae, and Crotalaria were analyzed for the identification of heterochromatin types with GC- and AT-specific fluorochromes and chromosomal location of ribosomal DNA loci using fluorescent in situ hybridization (FISH). A major 45S rDNA locus was observed on chromosome 1 in all the species, and a variable number of minor ones were revealed. Only one 5S rDNA locus was observed in the species investigated. Chromomycin A3 (CMA) revealed CMA+ bands colocalized with most rDNA loci, small bands unrelated to ribosomal DNA on two chromosome pairs in Crotalaria incana, and CMA+ centromeric bands that were quenched by distamycin A were detected in species of Calycinae and Crotalaria sections. DAPI+ bands were detected in C. incana. The results support the species relationships based on flower specialization and were useful for providing insight into mechanisms of karyotype evolution. The heterochromatin types revealed by fluorochromes suggest the occurrence of rearrangements in repetitive DNA families in these heterochromatic blocks during species diversification. This DNA sequence turnover and the variability in number/position of rDNA sites could be interpreted as resulting from unequal crossing over and (or) transposition events. The occurrence of only one 5S rDNA locus and the smaller chromosome size in the polyploids suggest that DNA sequence losses took place following polyploidization events.


2016 ◽  
Vol 149 (4) ◽  
pp. 297-303 ◽  
Author(s):  
Maelin da Silva ◽  
Patricia Barbosa ◽  
Roberto F. Artoni ◽  
Eliana Feldberg

Gymnotidae is a family of electric fish endemic to the Neotropics consisting of 2 genera: Electrophorus and Gymnotus. The genus Gymnotus is widely distributed and is found in all of the major Brazilian river systems. Physical and molecular mapping data for the ribosomal DNA (rDNA) in this genus are still scarce, with its chromosomal location known in only 11 species. As other species of Gymnotus with 2n = 54 chromosomes from the Paraná-Paraguay basin, G. mamiraua was found to have a large number of 5S rDNA sites. Isolation and cloning of the 5S rDNA sequences from G. mamiraua identified a fragment of a transposable element similar to the Tc1/mariner transposon associated with a non-transcribed spacer. Double fluorescence in situ hybridization analysis of this element and the 5S rDNA showed that they were colocalized on several chromosomes, in addition to acting as nonsyntenic markers on others. Our data show the association between these sequences and suggest that the Tc1 retrotransposon may be the agent that drives the spread of these 5S rDNA-like sequences in the G. mamiraua genome.


2019 ◽  
Vol 20 (14) ◽  
pp. 3545
Author(s):  
Sukhonthip Ditcharoen ◽  
Luiz Antonio Carlos Bertollo ◽  
Petr Ráb ◽  
Eva Hnátková ◽  
Wagner Franco Molina ◽  
...  

The catfish family Siluridae contains 107 described species distributed in Asia, but with some distributed in Europe. In this study, karyotypes and other chromosomal characteristics of 15 species from eight genera were examined using conventional and molecular cytogenetic protocols. Our results showed the diploid number (2n) to be highly divergent among species, ranging from 2n = 40 to 92, with the modal frequency comprising 56 to 64 chromosomes. Accordingly, the ratio of uni- and bi-armed chromosomes is also highly variable, thus suggesting extensive chromosomal rearrangements. Only one chromosome pair bearing major rDNA sites occurs in most species, except for Wallago micropogon, Ompok siluroides, and Kryptoterus giminus with two; and Silurichthys phaiosoma with five such pairs. In contrast, chromosomes bearing 5S rDNA sites range from one to as high as nine pairs among the species. Comparative genomic hybridization (CGH) experiments evidenced large genomic divergence, even between congeneric species. As a whole, we conclude that karyotype features and chromosomal diversity of the silurid catfishes are unusually extensive, but parallel some other catfish lineages and primary freshwater fish groups, thus making silurids an important model for investigating the evolutionary dynamics of fish chromosomes.


2012 ◽  
Vol 10 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Celeste Mutuko Nakayama ◽  
Eliana Feldberg ◽  
Luiz Antonio Carlos Bertollo

Six species of Serrasalmidae from the central Amazon, representatives of the genera Serrasalmus (S. elongatus, S. maculatus, S. cf. rhombeus, and S. rhombeus), Pygocentrus (P. nattereri), and Colossoma (C. macropomum), were analyzed regarding the distribution of the Ag-NORs, C-positive heterochromatin and 18S and 5S rRNA genes on the chromosomes. All specimens had 2n = 60 chromosomes, except S. cf. rhombeus, with 2n = 58, and C. macropomum with 2n = 54 chromosomes. The Ag-NORs were multiple and located on the short arms of subtelo-acrocentric chromosomes in all Serrasalmus species and in P. nattereri, but were found on metacentric chromosomes in C. macropomum. The 18S rDNA sites were usually coincident with Ag-NORs, although some species had a higher number and/or a distinct localization of these sites. C-positive heterochromatin was preferentially situated in centromeric regions, remarkably on metacentric pair number 7 in all Serrasalmus species and number 3 in P. nattereri, which beared a conspicuous proximal C-band on the long arms. The 5S rDNA sites were detected in a single chromosomal pair in all species. In Serrasalmus and P. nattereri, this pair was the number 7 and 3, respectively, thereby revealing its co-localization with the conspicuous heterochromatic band. However, in C. macropomum, only one homologue (probably belonging to pair number 12) exhibited 5S rDNA sites on the short arms, close to the centromere. The present data revealed reliable cytotaxonomic markers, enabling the evaluation of karyotype differentiation and interrelationships among Serrasalmidae, as well as the probable occurrence of a species complex in S. rhombeus.


Author(s):  
Caitlin M Singleton ◽  
Francesca Petriglieri ◽  
Jannie M Kristensen ◽  
Rasmus H Kirkegaard ◽  
Thomas Y Michaelsen ◽  
...  

AbstractMicroorganisms are critical to water recycling, pollution removal and resource recovery processes in the wastewater industry. While the structure of this complex community is increasingly understood based on 16S rRNA gene studies, this structure cannot currently be linked to functional potential due to the absence of high-quality metagenome-assembled genomes (MAGs) with full-length rRNA genes for nearly all species. Here, we sequence 23 Danish full-scale wastewater treatment plant metagenomes, producing >1 Tbp of long-read and >0.9 Tbp of short-read data. We recovered 1083 high-quality MAGs, including 57 closed circular genomes. The MAGs accounted for ~30% of the community, and meet the stringent MIMAG high-quality draft requirements including full-length rRNA genes. We show how novel high-quality MAGs in combination with >13 years of amplicon data, Raman microspectroscopy and fluorescence in situ hybridisation can be used to uncover abundant undescribed lineages belonging to important functional groups.


Sign in / Sign up

Export Citation Format

Share Document