Corrigendum to: Optimising grain yield and grazing potential of crops across Australia’s high-rainfall zone: a simulation analysis. 1. Wheat

2016 ◽  
Vol 67 (1) ◽  
pp. 117 ◽  
Author(s):  
Lindsay W. Bell ◽  
Julianne M. Lilley ◽  
James R. Hunt ◽  
John A. Kirkegaard

Interest is growing in the potential to expand cropping into Australia's high-rainfall zone (HRZ). Dual-purpose crops are suited to the longer growing seasons in these environments to provide both early grazing for livestock and later regrow to produce grain. Grain yield and grazing potential of wheats of four different maturity types were simulated over 50 years at 13 locations across Australia's HRZ, and sowing date, nitrogen (N) availability and crop density effects were explored. Potential grazing days on wheat were obtained by simulating sheep grazing crops to Zadoks growth stage Z30 at 25 dry sheep equivalents (DSE)/ha. Optimal sowing dates for each maturity type at each location were matched to the flowering window during which risk of frost and heat stress was lowest. Overall, we found significant national potential for dual-purpose use of winter wheat cultivars across Australia's HRZ, with opportunities identified in all regions. Simulated mean wheat yields exceeded 6t/ha at most locations, with highest mean grain yields (8–10t/ha) in southern Victoria, and lower yields (5–7t/ha) in the south-west of Western Australia (WA) and central and northern New South Wales (NSW). Highest grazing days were from winter cultivars sown early (March–mid-April), which could provide 1700–3000 DSE-days/ha of grazing across HRZ locations; this was 2–3 times higher than could be obtained from grazing spring cultivars (200–800 DSE-days/ha). Sowing date was critical to maximise both grazing and grain yield potential from winter cultivars; each 1-week delay in sowing after 8 March reduced grazing by 200–250 DSE-days/ha and grain yield by 0.45t/ha. However, in Mediterranean climates, a lower frequency of early sowing opportunities before mid-April (

2015 ◽  
Vol 66 (4) ◽  
pp. 332 ◽  
Author(s):  
Lindsay W. Bell ◽  
Julianne M. Lilley ◽  
James R. Hunt ◽  
John A. Kirkegaard

Interest is growing in the potential to expand cropping into Australia’s high-rainfall zone (HRZ). Dual-purpose crops are suited to the longer growing seasons in these environments to provide both early grazing for livestock and later regrow to produce grain. Grain yield and grazing potential of wheats of four different maturity types were simulated over 50 years at 13 locations across Australia’s HRZ, and sowing date, nitrogen (N) availability and crop density effects were explored. Potential grazing days on wheat were obtained by simulating sheep grazing crops to Zadoks growth stage Z30 at 25 dry sheep equivalents (DSE)/ha. Optimal sowing dates for each maturity type at each location were matched to the flowering window during which risk of frost and heat stress was lowest. Overall, we found significant national potential for dual-purpose use of winter wheat cultivars across Australia’s HRZ, with opportunities identified in all regions. Simulated mean wheat yields exceeded 6 t/ha at most locations, with highest mean grain yields (8–10 t/ha) in southern Victoria, and lower yields (5–7 t/ha) in the south-west of Western Australia (WA) and central and northern New South Wales (NSW). Highest grazing days were from winter cultivars sown early (March–mid-April), which could provide 1700–3000 DSE-days/ha of grazing across HRZ locations; this was 2–3 times higher than could be obtained from grazing spring cultivars (200–800 DSE-days/ha). Sowing date was critical to maximise both grazing and grain yield potential from winter cultivars; each 1-week delay in sowing after 8 March reduced grazing by 200–250 DSE-days/ha and grain yield by 0.45 t/ha. However, in Mediterranean climates, a lower frequency of early sowing opportunities before mid-April (<30% of years) is likely to limit the potential to use winter cultivars. Prospects to graze shorter season spring cultivars that fit later sowing windows require further examination in south-west WA, the slopes of NSW and southern Queensland.


2015 ◽  
Vol 66 (4) ◽  
pp. 349 ◽  
Author(s):  
Julianne M. Lilley ◽  
Lindsay W. Bell ◽  
John A. Kirkegaard

Recent expansion of cropping into Australia’s high-rainfall zone (HRZ) has involved dual-purpose crops suited to long growing seasons that produce both forage and grain. Early adoption of dual-purpose cropping involved cereals; however, dual-purpose canola (Brassica napus) can provide grazing and grain and a break crop for cereals and grass-based pastures. Grain yield and grazing potential of canola (up until bud-visible stage) were simulated, using APSIM, for four canola cultivars at 13 locations across Australia’s HRZ over 50 years. The influence of sowing date (2-weekly sowing dates from early March to late June), nitrogen (N) availability at sowing (50, 150 and 250 kg N/ha), and crop density (20, 40, 60, 80 plants/m2) on forage and grain production was explored in a factorial combination with the four canola cultivars. The cultivars represented winter, winter × spring intermediate, slow spring, and fast spring cultivars, which differed in response to vernalisation and photoperiod. Overall, there was significant potential for dual-purpose use of winter and winter × spring cultivars in all regions across Australia’s HRZ. Mean simulated potential yields exceeded 4.0 t/ha at most locations, with highest mean simulated grain yields (4.5–5.0 t/ha) in southern Victoria and lower yields (3.3–4.0 t/ha) in central and northern New South Wales. Winter cultivars sown early (March–mid-April) provided most forage (>2000 dry sheep equivalent (DSE) grazing days/ha) at most locations because of the extended vegetative stage linked to the high vernalisation requirement. At locations with Mediterranean climates, the low frequency (<30% of years) of early sowing opportunities before mid-April limited the utility of winter cultivars. Winter × spring cultivars (not yet commercially available), which have an intermediate phenology, had a longer, more reliable sowing window, high grazing potential (up to 1800 DSE-days/ha) and high grain-yield potential. Spring cultivars provided less, but had commercially useful grazing opportunities (300–700 DSE-days/ha) and similar yields to early-sown cultivars. Significant unrealised potential for dual-purpose canola crops of winter × spring and slow spring cultivars was suggested in the south-west of Western Australia, on the Northern Tablelands and Slopes of New South Wales and in southern Queensland. The simulations emphasised the importance of early sowing, adequate N supply and sowing density to maximise grazing potential from dual-purpose crops.


1995 ◽  
Vol 35 (1) ◽  
pp. 93 ◽  
Author(s):  
RD FitzGerald ◽  
ML Curll ◽  
EW Heap

Thirty varieties of wheat originating from Australia, UK, USA, Ukraine, and France were evaluated over 3 years as dual-purpose wheats for the high rainfall environment of the Northern Tablelands of New South Wales (mean annual rainfall 851 mm). Mean grain yields (1.9-4.3 t/ha) compared favourably with record yields in the traditional Australian wheatbelt, but were much poorer than average yields of 6.5 t/ha reported for UK crops. A 6-week delay in sowing time halved grain yield in 1983; cutting in spring reduced yield by 40% in 1986. Grazing during winter did not significantly reduce yields. Results indicate that the development of wheat varieties adapted to the higher rainfall tablelands and suited to Australian marketing requirements might help to provide a useful alternative enterprise for tableland livestock producers.


Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.


2005 ◽  
Vol 62 (4) ◽  
pp. 357-365 ◽  
Author(s):  
Giovani Benin ◽  
Fernando Irajá Félix de Carvalho ◽  
Antônio Costa de Oliveira ◽  
Claudir Lorencetti ◽  
Igor Pires Valério ◽  
...  

Several studies have searched for higher efficiency on plant selection in generations bearing high frequency of heterozygotes. This work aims to compare the response of direct selection for grain yield, indirect selection through average grain weight and combined selection for higher yield potential and average grain weight of oat plants (Avena sativa L.), using the honeycomb breeding method. These strategies were applied in the growing seasons of 2001 and 2002 in F3 and F4 populations, respectively, in the crosses UPF 18 CTC 5, OR 2 <FONT FACE=Symbol>´</FONT> UPF 7 and OR 2 <FONT FACE=Symbol>´</FONT> UPF 18. The ten best genetic combinations obtained for each cross and selection strategy were evaluated in greenhouse yield trials. Selection of plants with higher yield and average grain weight might be performed on early generations with high levels of heterozygosis. The direct selection for grain yield and indirect selection for average grain weight enabled to increase the average of characters under selection. However, genotypes obtained through direct selection presented lower average grain weight and those obtained through the indirect selection presented lower yield potential. Selection strategies must be run simultaneously to combine in only one genotype high yield potential and large grain weight, enabling maximum genetic gain for both characters.


2011 ◽  
Vol 62 (12) ◽  
pp. 1067 ◽  
Author(s):  
L. G. Gaynor ◽  
R. J. Lawn ◽  
A. T. James

The response of irrigated soybean to sowing date and to plant population was evaluated in field experiments over three years at Leeton, in the Murrumbidgee Irrigation Area (MIA) in southern New South Wales. The aim was to explore the options for later sowings to improve the flexibility for growing soybean in double-cropping rotations with a winter cereal. The experiments were grown on 1.83-m-wide raised soil beds, with 2, 4, or 6 rows per bed (years 1 and 2) or 2 rows per bed only (year 3). Plant population, which was manipulated by changing either the number of rows per bed (years 1 and 2) or the within-row plant spacing (year 3), ranged from 15 to 60 plants/m2 depending on the experiment. Two sowings dates, late November and late December, were compared in years 1 and 3, while in year 2, sowings in early and late January were also included. Three genotypes (early, medium, and late maturity) were grown in years 1 and 2, and four medium-maturing genotypes were grown in year 3. In general, machine-harvested seed yields were highest in the November sowings, and declined as sowing was delayed. Physiological analyses suggested two underlying causes for the yield decline as sowing date was delayed. First and most importantly, the later sown crops flowered sooner after sowing, shortening crop duration and reducing total dry matter (TDM) production. Second, in the late January sowings of the medium- and late-maturing genotypes, harvest index (HI) declined as maturity was pushed later into autumn, exposing the crops to cooler temperatures during pod filling. Attempts to offset the decline in TDM production as sowing was delayed by using higher plant populations were unsuccessful, in part because HI decreased, apparently due to greater severity of lodging. The studies indicated that, in the near term, the yield potential of current indeterminate cultivars at the late December sowing date is adequate, given appropriate management, for commercially viable double-cropping of soybean in the MIA. In the longer term, it is suggested that development of earlier maturing, lodging-resistant genotypes that retain high HI at high sowing density may allow sowing to be delayed to early January.


2018 ◽  
Vol 64 (No. 7) ◽  
pp. 310-316 ◽  
Author(s):  
Mirosavljevic Milan ◽  
Momcolovic Vojislava ◽  
Maksimovic Ivana ◽  
Putnik-Delic Marina ◽  
Pržulj Novo ◽  
...  

The aim of this study was to improve understanding of (1) the effect of genotypic and environmental factors on pre-anthesis development and leaf appearance traits of barley and wheat; (2) the relationship of these factors with grain yield, and (3) the differences between these two crops across different environments/sowing dates. Therefore, trials with six two-row winter barley and six winter wheat cultivars were carried out in two successive growing seasons on four sowing dates. Our study showed that the observed traits varied between species, cultivars and sowing dates. In both growing seasons, biomass at anthesis and grain yield declined almost linearly by delaying the sowing date. There was no clear advantage in grain yield of wheat over barley under conditions of later sowing dates. Generally, barley produced more leaf and had shorter phyllochron than wheat. Both wheat and barley showed a similar relationship between grain yield and different pre-anthesis traits.


1999 ◽  
Vol 50 (2) ◽  
pp. 137 ◽  
Author(s):  
A. Kamoshita ◽  
M. Cooper ◽  
R. C. Muchow ◽  
S. Fukai

The differences in grain nitrogen (N) concentration among 3 sorghum (Sorghum bicolor (L.) Moench) hybrids with similar grain yield were examined under N-limiting conditions in relation to the availability of assimilate and N to grain. Several manipulation treatments [N fertiliser application, lower leaves shading, thinning (reduced plant population), whole canopy shading, canopy opening, spikelet removal] were imposed to alter the relative N and assimilate availability to grain under full irrigation supply. Grain N concentration increased by either increased grain N availability or yield reduction while maintaining N uptake. Grain N concentration, however, did not decrease in the treatments where relative abundance of N compared with assimilate was intended to be reduced. The minimum levels of grain N concentration differed from 0.95% (ATx623/RTx430) to 1.14% (DK55plus) in these treatments. Regardless of the extent of variation in assimilate and N supply to grain, the ranking of hybrids on grain N concentration was consistent across the manipulation treatments. For the 3 hybrids examined, higher grain N concentration was associated with higher N uptake during grain filling and, to a lesser extent, with higher N mobilisation. Hybrids with larger grain N accumulation had a larger number of grains. There was no tradeoff between grain N concentration and yield, suggesting that grain protein concentration can be improved without sacrificing yield potential.


1988 ◽  
Vol 28 (4) ◽  
pp. 499 ◽  
Author(s):  
RJ Martin ◽  
MG McMillan ◽  
JB Cook

A survey of management practices on wheat farms in northern New South Wales was carried out on 50 farms between 1983 and 1985 and was supplemented by a questionnaire mailed to 750 growers in 1985. Information was collected on crop rotation, tillage practice, fertiliser use and weed control practices. Data were collected from 1 paddock on each farm and included: wheat grain yield and quality, available soil water and nutrients at sowing, wild oat density, and incidence of soil-borne diseases. The 3-year average grain yield in survey paddocks was 2.2 t/ha. Multiple regression analysis was used to identify factors affecting grain yield and protein in 1985. Of the variation in wheat grain yield, 74% was explained by variation in available soil water at sowing, available soil nitrate at sowing, sowing date and wild oat density. Grain protein content declined with increasing available soil water and phosphate at sowing and with earlier sowing, but increased with available nitrate at sowing. Agronomic practices aimed at maximising wheat grain yield, in the presence of a deficiency ofavailable soil nitrate, are likely to result in a reduction of grain protein content. Likewise, responses to application of nitrogenous fertiliser are likely to be inversely related to available soil water at sowing. The mean gross margin for 1984 and 1985, based on $100/t of wheat grain, was $128. The mean gross margin for the least profitable 20% of paddocks was $37, and $253 for the top 20%. New varieties of wheat and herbicides were readily adopted by farmers. On the other hand, adoption of nitrogenous fertiliser use was slow, considering the widespread and long-standing deficiencies of nitrogen in cropping soils of the region. Crop rotation and tillage practices have changed only marginally since the late 1940s. The results of this survey indicate that the usefulness of soil testing for predicting fertiliser requirements could be improved by taking into account levels of available soil water, weed competition and sowing date and by using multiple regression analysis.


1985 ◽  
Vol 104 (2) ◽  
pp. 405-411 ◽  
Author(s):  
C. F. Green ◽  
D. T. Furmston ◽  
J. D. Ivins

SummaryDuring three growing seasons (1980–3) the influence of sowing date (early September to mid-November) on the yield of winter barley (cv. Igri) was assessed. Delaying sowing resulted in a linear decrease in maximum grain yield at a rate of 0·43 % for every day sowing was delayed. Advancing the date of sowing increased the duration of preanthesis development, increased the level of tillering and hence ear density at harvest. Yield was linearly related to the resultant higher number of grains.


Sign in / Sign up

Export Citation Format

Share Document