Genetic parameters for bodyweight, wool, and disease resistance and reproduction traits in Merino sheep. 4. Genetic relationships between and within wool traits

2009 ◽  
Vol 49 (4) ◽  
pp. 289 ◽  
Author(s):  
A. E. Huisman ◽  
D. J. Brown

The aim of this paper was to describe the genetic relationship among expressions at different ages of seven wool traits: greasy and clean fleece weights, fibre diameter, coefficient of variation of fibre diameter, staple length and strength, and mean fibre curvature. Genetic correlations among measurements at different ages for the same trait were moderate to high, and ranged from ~0.6 for both fleece weights to 0.9 and higher for mean fibre diameter and curvature. Generally, low to moderate genetic correlations (0.3–0.4) were estimated between fleece weights and fibre diameter, clean fleece weight and staple length, and fibre diameter and staple strength. Small positive genetic correlations (0.2) were estimated between greasy and clean fleece weight with fibre diameter coefficient of variation, and between fibre diameter and staple length. Mean fibre curvature had a negative genetic correlation (approximately –0.4) with most other wool traits, the exceptions were staple strength (~0.0) and coefficient of variation of fibre diameter (approximately –0.1). Fibre diameter, staple length and staple strength had negative genetic correlations with coefficient of variation of fibre diameter (–0.15, –0.10, and –0.61, respectively). The results indicate that for most wool traits only one measurement across ages is required to make accurate selection decisions. The relationships between traits are generally moderate to low suggesting that simultaneous genetic improvement is possible.

2007 ◽  
Vol 58 (9) ◽  
pp. 921 ◽  
Author(s):  
M. Asadi Fozi ◽  
J. H. J. Van der Werf ◽  
A. A. Swan

Genetic parameters for skin follicle traits, wool traits, body weight, and number of lambs weaned per ewe joined were estimated for 5108 10-month-old Australian fine-wool Merinos born between 1990 and 1996. These animals were descended from 261 sires and 2508 dams. The skin follicle number index that is based on skin surface area, and primary, secondary, or total follicle density were introduced as possible early-age selection criteria estimated at 6 months of age. Heritability estimates for total, secondary, and primary follicle number index were 0.45 ± 0.04, 0.46 ± 0.04, and 0.38 ± 0.04, respectively. The genetic correlations of total follicle number index with clean fleece weight, mean fibre diameter, staple strength, coefficient of variation of fibre diameter, body weight, and number of lambs weaned were 0.16, –0.67, 0.00, 0.03, 0.22, and 0.22, respectively. Responses to selection on indices including and excluding follicle traits were calculated based on the genetic parameters estimated, and with annual responses calculated using an optimised age structure. On average, 10% greater response was predicted when total follicle number index was used as an additional selection criterion in different micron premium scenarios. In comparison, skin follicle density had a smaller effect on genetic improvement. The extra response was ~1%. Similar index responses were obtained when total follicle number index was used as a replacement selection criterion for clean fleece weight, mean fibre diameter, and coefficient of variation of fibre diameter for breeding objectives with low emphasis on fibre diameter. In objectives with high emphasis on fibre diameter, unfavourable correlated responses in staple strength and CV of fibre diameter limited the effectiveness of using total follicle number index as a selection criterion. Although the use of total follicle number index as an additional selection criterion can be favourable for some breeding objectives, measuring this trait is currently cost prohibitive to inclusion in Merino breeding programs.


2008 ◽  
Vol 48 (9) ◽  
pp. 1186 ◽  
Author(s):  
A. E. Huisman ◽  
D. J. Brown

The Australian Merino is the predominant genetic resource for both the prime lamb and sheep meat industries of Australia. There are very few studies that provide good information on the relationships between wool and non-wool traits. The objective of this paper was to describe genetic relationships within bodyweight traits and between bodyweight and other traits recorded in Merino sheep. The genetic correlation between bodyweight, fleece weight and fibre diameter was positive (0.1 to 0.2). While fibre diameter coefficient of variation, staple length, staple strength, mean fibre curvature, and faecal egg count were not correlated with bodyweight. Scrotal circumference (0.4), number of lambs born (0.1), and number of lambs weaned (0.1) were positively correlated with bodyweight. Results indicate that selection for an increase in bodyweight will have a positive effect on eye muscle depth, fleece weight, and reproduction traits, while selection for an increase in bodyweight will have a negative effect on fibre diameter and fibre diameter coefficient of variation.


2001 ◽  
Vol 72 (2) ◽  
pp. 241-250 ◽  
Author(s):  
T. Wuliji ◽  
K. G. Dodds ◽  
J. T. J. Land ◽  
R. N. Andrews ◽  
P. R. Turner

AbstractMerino yearling records from 1988 to 1992 birth years in ultrafine wool selection and random control flocks at Tara Hills High Country Station, New Zealand were analysed for live weight, fleece weight and wool characteristics. Estimates of heritability, genetic and phenotypic correlations among traits using REML methods are presented. Heritabilities (h2) of birth, weaning, autumn, spring and summer live weights and greasy and clean fleece weights were estimated as being 0·35, 0·34, 0·44, 0·43, 0·49, 0·24 and 0·28 respectively; while h2 of yield, fibre diameter, coefficient of variation in fibre diameter, staple crimp, staple length, staple strength, position of break, resistance to compression, bulk, CIE Y and CIE Y-Z were estimated to be 0·58, 0·59, 0·60, 0·45, 0·71, 0·13, 0·18, 0·46, 0·38, 0·38 and 0·42 respectively. Genetic correlations were found to be high among the live weights but low to moderate among fleece weight and wool characteristics. Heritability estimates of fibre diameter, fibre diameter variation and staple length were found to be higher in New Zealand fine wool Merinos than most of those reported in the literature. The results indicate that selection for reduced fibre diameter will have little effect on other major production traits such as live weight and fleece weight.


2000 ◽  
Vol 40 (1) ◽  
pp. 11 ◽  
Author(s):  
S. W. P. Cloete ◽  
A. Durand

Commercial Merino ewes were randomly allocated to 1 of 2 groups, which were joined either to commercial Merino or South African Meat Merino rams during October 1996 and 1997. Merino rams were involved in 161 joinings, and South African Meat Merino rams in 157 joinings. The proportions of ewes that lambed were independent of the breed of the sire when expressed relative to the number of ewes joined (0.809 and 0.801 in ewes joined to South African Meat Merino and Merino rams, respectively). The proportion of multiple lambs was similarly not affected by the breed of the service sire. Lambs sired by South African Meat Merino rams were on average ( s.e.) heavier (4.17 0.07 v. 3.86 0.07 kg; P<0.01) at birth. They also tended to have a better (0.69 v. 0.59; P<0.10) survival to weaning, and were heavier (26.9 0.6 v. 22.8 0.6 kg; P<0.01) at weaning than purebred Merino contemporaries. The combined effect of the tendency towards an improved survival rate as well as the increased lamb weaning weight resulted in a 36% increase (P<0.01) in lamb output in Merino ewes joined to South African Meat Merino ewes compared with ewes joined to Merino rams. Higher (P<0.01) proportions of ram lambs sired by South African Meat Merino rams reached slaughter weight (about 40 kg) before the onset of the dry Mediterranean summer than purebred Merinos. Two-tooth ewes sired by South African Meat Merino rams were heavier (P<0.01) at 2-tooth age (53.0 0.6 v. 52.0 0.6 kg) than purebred Merinos. The 2-tooth greasy fleece weight of South African Meat Merino sired 2-tooth ewes were lower (3.85 0.08 v. 4.66 0.09 kg; P<0.01), with a lower (66.8 0.6 v. 70.5 0.7 %; P<0.01) clean yield than that of purebred Merinos. This resulted in a marked difference in clean fleece weight between the 2 types (2.56 0.06 v. 3.28 0.06 kg, respectively). Wool produced by South African Meat Merino sired 2-tooth ewes was generally broader (21.8 0.3 v. 20.3 0.3 m; P<0.01) and shorter (87.3 1.3 v. 96.4 1.4 mm; P<0.01) than that of their purebred Merino contemporaries. The coefficient of variation of fibre diameter as well as staple strength was independent of the breed of the sire. Liveweight of adult ewes and wool traits were independent of the breed of the service sire.


2018 ◽  
Vol 58 (2) ◽  
pp. 207 ◽  
Author(s):  
S. Dominik ◽  
A. A. Swan

The present study estimated phenotypic and genetic relationships between wool production, reproduction and bodyweight traits in Australian fine-wool Merino sheep. The data for the study originated from the CSIRO Fine Wool Project, Armidale, Australia. Data on wool characteristics, measured at ~10 and 22 months of age, bodyweight and several reproduction traits across consecutive lambing opportunities were analysed. The genetic correlations were moderately negative between fibre diameter measured as yearling and adult, and lamb survival (rg = –0.34 ± 0.15 and rg = –0.28 ± 0.14 respectively) and total number of lambs weaned (rg = –0.32 ± 0.21 and rg = –0.40 ± 0.21 respectively). The genetic correlations of yearling and adult greasy and clean fleece weights with number of lambs weaned and fecundity showed moderately to highly negative relationships and a moderately negative correlation with the number of fetuses at pregnancy scanning. Phenotypic correlations between reproduction and wool production traits were estimated to be zero, with the exception of bodyweight showing low to moderate positive phenotypic correlations with total number of lambs born and weaned. Genetic variances were generally low for the reproduction traits and resulted in low heritability estimates (from h2 = 0.03 ± 0.01 to h2 = 0.12 ± 0.13), with the exception of total number of lambs born (h2 = 0.25 ± 0.03). The study indicated that parameter estimation and trait definition of lifetime reproduction records require careful consideration and more work in this area is required.


1974 ◽  
Vol 25 (6) ◽  
pp. 973 ◽  
Author(s):  
R Barlow

Correlated responses to selection for high and low clean fleece weight (W) in the Peppin Merino (Fleece plus and Fleece minus flocks respectively) are presented together with estimates of realized genetic correlations where appropriate. There were strong positive correlations between W and greasy fleece weight and between W and clean scoured yield, and a strong negative correlation between Wand crimp frequency. There was no consistent association between W and body weight. Selection for W caused little change in wool colour, a slight improvement in wool character, and an improvement in wool handle in the rams, but not in the ewes. There was an increase in face cover score and a decrease in birthcoat score in the Fleece minus flock, but there was no change in either trait in the Fleece plus flock. Possible reasons for these asymmetries are discussed. Most of the response in W in the Fleece plus flock arose through increases in fibre density, fibre diameter and staple length. Staple length was the major component associated with response in W in the Fleece minus flock. Decreases also occurred in fibre density and wrinkle score but there was no change in fibre diameter. Continued response in W in the Fleece minus flock was through staple length and, to a lesser extent, wrinkle score. The response in fibre density in both flocks arose through change in the ratio of secondary to primary fibres. Two-year-old and lifetime reproductive performances are reported for the two selection flocks. The Fleece minus 2-year-old ewes weaned significantly more lambs than their Fleece plus counterparts over the period studied. The lifetime reproductive performance of ewes was similar in both flocks, although there were significantly more multiple births in the Fleece plus flock. An examination of the divergence between the two flocks revealed no significant time trends. The asymmetrical pattern of response in W in these flocks is discussed in the light of the present data. __________________ *Part I, Aust. J. Agric. Res., 25: 643 (1974).


2006 ◽  
Vol 46 (7) ◽  
pp. 943 ◽  
Author(s):  
A. C. Schlink ◽  
S. Ortega ◽  
J. C. Greeff ◽  
M. E. Dowling

Optimising and ensuring the reproducibility of wool dyeing is of significant economic importance to the wool industry. Midside wool from 1824 Merino ewe and ram hoggets was used to estimate the heritability of Acid Red 1 dye absorption in clean wool. Acid Red 1 absorption had a high heritability of 0.45 ± 0.07 and was phenotypically poorly correlated with fibre diameter (–0.11 ± 0.03), the coefficient of variation of fibre diameter (0.05 ± 0.03), curvature (–0.05 ± 0.03), staple strength (–0.02 ± 0.02) and staple length (–0.09 ± 0.03), yield (0.08 ± 0.03) and dust penetration (0.07 ± 0.03). It was not genetically correlated with fibre diameter (–0.05 ± 0.09), the coefficient of variation of fibre diameter (0.02 ± 0.09), curvature (–0.09 ± 0.09), staple strength (–0.07 ± 0.10) or staple length (–0.03 ± 0.08), but weakly genetically correlated with yield (0.18 ± 0.08) and dust penetration (0.24 ± 0.12). Dye absorption was also genetically negatively correlated with wool felting as measured by feltball diameter (–0.26 ± 0.09). Acid Red 1 absorption was not genetically correlated with absorption of the cationic dye Methylene Blue. We suggest that there is a biological basis for differences between wools in dyeing performance and that this variation will depend on the class of dye being evaluated for wool dyeing.


Author(s):  
SPACE Lalit ◽  
Z. S. Malik ◽  
D. S. Dalal ◽  
C. S. Patil ◽  
S. P. Dahiya

Data on growth, reproduction and wool traits of 1603 Harnali sheep maintained at Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar over a period of 22 years (1992-2013) were utilized for genetic analysis. The overall least squares mean for birth weight (BW), weaning weight (WW), six month body weight (SMW), age at first lambing (AFL), weight at lambing (WL), average lambing interval (ALI), greasy fleece weight (GFW), staple length (SL) and Fibre diameter (FD) were estimated as 3.35±0.02 kg, 12.41±0.08 kg, 16.30±0.12 kg, 707.05±2.07 days, 26.91±0.10 kg and 402.85±2.40 days, 1.62±0.02 kg, 5.65±0.03 cm and 25.85±0.07 μ, respectively. The effect of year of birth, sex of lamb and dam's weight at lambing were significant for all growth traits. The effect of year of birth and dam's weight at lambing were significant for all reproduction traits and GFW. No definite trend was observed over the years for body weights and reproductive traits. The effect of sex was significant for early growth traits. The heritability estimates were moderate for all the growth traits with high genetic correlations of BW and WW with SMW. Reproduction traits had lower estimates of heritability which indicated presence of lower additive genetic variance for these traits. Heritability estimates for studied wool traits were moderate to high. Positive genetic and phenotypic correlation of BW and WW with six month body weight and grease fleece weight indicated that selection for six month body weight would increase body weight and grease fleece weight.


2009 ◽  
Vol 49 (1) ◽  
pp. 32 ◽  
Author(s):  
S. I. Mortimer ◽  
D. L. Robinson ◽  
K. D. Atkins ◽  
F. D. Brien ◽  
A. A. Swan ◽  
...  

Heritability was estimated for a range of visually assessed traits recorded on Merino sheep, together with the phenotypic and genetic correlations among the visually assessed traits and correlations of the visually assessed traits with measured wool production traits and liveweight. Data were derived from four research resource flocks, with a range of 12 958 to 57 128 records from animals with 478 to 1491 sires for the various traits. The estimates of heritability were high for the wool quality traits of handle, wool character and wool colour (0.33–0.34) and the conformation traits of face cover, neck wrinkle and body wrinkle (0.42–0.45), moderate for front leg structure (0.18) and low for back leg structure (0.13). Fleece rot score had low heritability (0.14), while classer grade was moderately heritable (0.20). Estimates of genetic correlations among the visually assessed wool quality traits were low to moderate in size and positive (0.17–0.47). Genetic correlation estimates among the assessed conformation traits were generally very low, except for the genetic correlations between scores for neck and body wrinkle (0.92 ± 0.01) and front and back leg structure (0.31 ± 0.09). Fleece rot score had low positive genetic correlations with neck and body wrinkle scores (0.18 ± 0.05 and 0.15 ± 0.05, respectively) and classer grade (0.26 ± 0.06). Classer grade was slightly positively correlated with the wool quality traits (0.17–0.45) and leg structure traits (0.21–0.25). The genetic correlations among the visually assessed traits were generally neutral to favourable. The visually assessed wool quality traits had low to moderate favourable genetic correlations with mean and coefficient of variation of fibre diameter (0.19 –0.47), but negative correlations with clean wool yield (–0.26 to –0.37). Face cover was unfavourably correlated with staple length (–0.27 ± 0.04) and liveweight (–0.23 ± 0.02). Neck and body wrinkle scores were genetically associated with higher greasy (0.33–0.39) and clean fleece weights (0.19–0.22), greater coefficient of variation of fibre diameter (0.24–0.26) and fibre curvature (0.27–0.28), but with reduced yield (–0.26 to –0.28) and staple length (–0.34 to –0.41). Fleece rot score was genetically correlated with clean fleece weight (0.26 ± 0.05) and coefficient of variation of fibre diameter (0.27 ± 0.04). Classer grade was favourably correlated with greasy and clean fleece weights (–0.41 to –0.43), staple length (–0.29 ± 0.04), liveweight (–0.36 ± 0.03) and coefficient of variation of fibre diameter (0.27 ± 0.03). Most genetic correlations between the visually assessed traits and the measured production traits and liveweight were close to zero and less than 0.2 in magnitude. This study provides accurate values for the parameter matrix required to incorporate visually assessed traits into breeding objectives and the genetic evaluation programs used in the Australian sheep industry, allowing the development of breeding objectives and indexes that optimally combine visually assessed performance and measured production in Merino sheep.


2002 ◽  
Vol 53 (3) ◽  
pp. 271 ◽  
Author(s):  
S. W. P. Cloete ◽  
J. C. Greeff ◽  
R. P. Lewer

(Co)variance estimates for hogget liveweight, greasy fleece weight, clean fleece weight, clean yield, fibre diameter, and the coefficient of variation of fibre diameter were obtained for a Western Australian Merino resource flock. The flock encompassed 16 medium wool bloodlines and data were available for the period 1982–93. Direct additive genetic variances (h2) — expressed as a ratio of the total phenotypic variance within bloodlines — were estimated at 0.52 for hogget liveweight, 0.44 for greasy fleece weight, 0.42 for clean fleece weight, 0.63 for clean yield, 0.71 for fibre diameter, and 0.62 for coefficient of variation of fibre diameter. Maternal genetic variance estimates were significant (P < 0.05) only in hogget liveweight and fibre diameter, but components within bloodlines were low (0.05 for liveweight and 0.02 for fibre diameter). Direct within-bloodline genetic correlations of hogget liveweight as well as greasy and clean fleece weight with fibre diameter were positive (0.17, 0.31, and 0.31, respectively), suggesting that selection for bigger and heavier cutting sheep would generally lead to a broader fibre diameter. Liveweight was unrelated to clean yield and negatively related to coefficient of variation of fibre diameter (–0.17). Greasy fleece weight was negatively related to clean yield (–0.20). The genetic correlation of clean fleece weight with clean yield was positive (0.37). Wool quantity was, in general, positively related to coefficient of variation of fibre diameter, although the estimated genetic correlations were low (0.12 for greasy fleece weight and 0.07 for clean fleece weight). The genetic correlation between fibre diameter and coefficient of variation of fibre diameter was negative, and fairly low (–0.10). These results are discussed with reference to sheep breeding.


Sign in / Sign up

Export Citation Format

Share Document