Differences in the properties of a red earth after ten years of wheat-lupin and wheat-subterranean clover rotations

1996 ◽  
Vol 36 (5) ◽  
pp. 539 ◽  
Author(s):  
KY Chan ◽  
DP Heenan

2 different rotations, wheat-lupin (WL) and wheat-subterranean clover (WC) were compared under 2 different tillage systems, direct-drilled (DD) and conventional tillage (CT) at a 10-year-old experimental site in Wagga Wagga, New South Wales. Significant differences in soil organic carbon concentration between the 2 rotations were found only under the DD systems; soil under WC rotation had a significantly higher organic carbon in the top 0.05 m than the WL soil. No such difference was detected under CT. Under both tillage systems, WC soil had lower pH (by 0.32 unit), with accompanying lower exchangeable magnesium but higher extractable aluminium than the WL soil in the top 0.05 m. Despite similar earthworm population and surface macroporosity, there was evidence suggesting that, under direct drilling, 10 years of WC rotation had reduced the subsoil water storage after summer fallow and reduced the effective rooting depth of wheat when compared with the WL rotation. These had not resulted in difference in wheat yield between the rotations even though a smaller average grain size was found under WC rotation in the 1990 season.

2011 ◽  
Vol 183-185 ◽  
pp. 1190-1194
Author(s):  
Jun Ke Zhang ◽  
Qing Ju Hao ◽  
Chang Sheng Jiang ◽  
Yan Wu

The impact of conservation tillage practices on carbon sequestration has been of great interest in recent years. This experiment analyzed the organic carbon status of soils sampled at depth increments from 0 to 60 cm after 20 years in a purple paddy soil. The tillage experiment was established in the Key Field Station for Monitoring of Eco-Environment of Purple Soil of the Ministry of Agriculture of China, located in the farm of Southwest University (30°26′N, 106°26′E), Chongqing. In this paper, five tillage treatments including conventional tillage with rice only system (DP), conventional tillage with rotation of rice and rape system (SL), no-till and ridge culture with rotation of rice and rape system (LM), no-till and plain culture with rotation of rice and rape system (XM) and tillage and ridge culture with rotation of rice and rape system (LF) were selected as research objectives to measure SOC storage and stratification ratio of SOC (CSR). The SOC storage under different tillage systems was calculated based on an equivalent soil mass. The CSR can be used as an indicator of soil quality because surface organic matter is essential to erosion control, water infiltration, and the conservation of nutrients. Results showed that in soil under no-till SOC was concentrated near the surface, while in tilled soil SOC decreased equably with the increase of soil depth. The difference of SOC contents between the five tillage systems was the largest in the top soil and the lowest in the bottom soil. The order of SOC storage was LM (158.52 Mg C•ha-1) >DP (106.74 Mg C•ha-1) >XM (100.11 Mg C•ha-1) >LF (93.11 Mg C•ha-1) >SL (88.59 Mg C•ha-1), LM treatment was significantly higher than the other treatments. The CSR of 0-10/50-60 cm was 2.65, 2.70 and 2.14 under LM, XM and LF treatments, while 1.54 and 1.92 under DP and SL treatments. We considered CSR>2 indicate an improvement in soil quality produced by changing from tillage to no-tillage, as well as changing from plane to ridge. Overall, long-term LM treatment is a valid strategy for increasing SOC storage and improving soil quality in a purple paddy soil in Southwest China.


2011 ◽  
Vol 56 (2) ◽  
pp. 111-119
Author(s):  
Branimir Mikic ◽  
Bojan Stipesevic ◽  
Emilija Raspudic ◽  
Georg Drezner ◽  
Bojana Brozovic

Modern soil tillage systems based on different tools than mouldboard plough have very often stronger weed occurrence, which can be a serious problem for achieving high yields. An obvious solution for weed suppression is a herbicide, whose improper use can deteriorate environment and lead toward serious ecological problems. In order to investigate the interaction between soil tillage and herbicide, trial was set up in Valpovo in seasons 2008/09 - 2010/11. Two soil tillage systems (CT-conventional tillage, based on mouldboard ploughing, and CH-chiselling and disk harrowing, without ploughing) and five herbicide treatments (NH-control, no herbicides; H10- recommended dose of Herbaflex (2 l ha-1); H05-half dose of Herbaflex; F10- recommended dose of Fox (1.5 l ha-1); and F05-half dose of Fox) were applied to winter wheat crops. Results showed similar effects of soil tillage on the winter wheat yield, whereas different herbicide dosages showed similar weed suppression and influence on winter wheat yield.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 208
Author(s):  
Małgorzata Szostek ◽  
Ewa Szpunar-Krok ◽  
Renata Pawlak ◽  
Jadwiga Stanek-Tarkowska ◽  
Anna Ilek

The aim of the study was to compare the effect of conventional, simplified, and organic farming systems on changes in the content of soil organic carbon, organic matter fractions, total nitrogen, and the enzymatic activity. The research was conducted from 2016–2018 on arable land in the south-eastern part of Poland. The selected soils were cultivated in conventional tillage (C_Ts), simplified tillage (S_Ts), and organic farming (O_Fs) systems. The analyses were performed in soil from the soil surface layers (up to 25 cm depth) of the experimental plots. The highest mean contents of soil organic carbon, total nitrogen, and organic matter fractions were determined in soils subjected to the simplified tillage system throughout the experimental period. During the study period, organic carbon concentration on surface soil layers under simplified tillage systems was 31 and 127% higher than the soil under conventional tillage systems and organic farming systems, respectively. Also, the total nitrogen concentration in those soils was more than 40% and 120% higher than conventional tillage systems and organic farming systems, respectively. Moreover, these soils were characterised by a progressive decline in SOC and Nt resources over the study years. There was no significant effect of the analysed tillage systems on the C:N ratio. The tillage systems induced significant differences in the activity of the analysed soil enzymes, i.e., dehydrogenase (DH) and catalase (CAT). The highest DH activity throughout the experiment was recorded in the O_Fs soils, and the mean value of this parameter was in the range of 6.01–6.11 μmol TPF·kg−1·h−1. There were no significant differences in the CAT values between the variants of the experiment. The results confirm that, regardless of other treatments, such as the use of organic fertilisers, tillage has a negative impact on the content of SOC and organic matter fractions in the O_Fs system. All simplifications in tillage reducing the interference with the soil surface layer and the use of organic fertilisers contribute to improvement of soil properties and enhancement of biological activity, which helps to maintain its productivity and fertility.


Soil Research ◽  
1993 ◽  
Vol 31 (1) ◽  
pp. 13 ◽  
Author(s):  
KY Chan ◽  
DP Heenan

Differences in surface soil hydraulic properties after 10 years of different tillage (direct drilled (DD) versus conventional tillage (CT)) and stubble management practices (stubble retained (SR) versus stubble burnt (SB)) were measured in a lupin/wheat rotation on a red earth at Wagga Wagga, NSW. Sorptivity and hydraulic conductivity measurements using a disk permeameter under negative matric potential (-40 mrn) was complicated by water repellence found under SR as compared to SB treatments. Using water, K-40 of SR/DD was only 40% of SB/CT. However, using a wetting agent instead of water increased K-40 of SR/DD by >400% but did not significantly change that of SB/CT such that K-40 was similar for the two treatments. Despite similar bulk density, hydraulic conductivity under ponded infiltration of SR/DD was 4.1 times that of SB/CT. Differences in hydraulic conductivity between -40 mm and under ponded conditions suggest the presence of significantly more transmitting macropores >1.5 mm in diameter under direct drilling. Dye infiltration results indicated that tillage significantly reduced the number of transmitting macropores (>1 mm) even though the total number of macropores remained similar amongst the different treatments. 65% of the macropores were transmitting under SR/DD compared to 1% under SB/CT. A significant correlation (r2=0.82**) was found between transmitting pores (>1.0 mm) and the earthworm population. Tillage but not stubble burning significantly reduced earthworm population.


2011 ◽  
Vol 183-185 ◽  
pp. 1185-1189
Author(s):  
Qi Wen Tang ◽  
Chang Sheng Jiang ◽  
Qing Ju Hao ◽  
Yan Wu

The effect of different tillage systems on the size distribution of aggregates and organic carbon distribution and storage in different size aggregates in a Hydragric Anthrosol were studied in a long-term experiment in Chongqing, China. The experiment included five tillage treatments, which are conventional tillage with rice only system (DP), conventional tillage with rotation of rice and rape system (SH), no-till and ridge culture with rotation of rice and rape system (LM), no-till and plain culture with rotation of rice and rape system (XM) and tillage and ridge culture with rotation of rice and rape system (LF), respectively. The results showed that the aggregates 0.25-0.05 mm in diameter accounted for the largest proportion in each soil layer under all treatments. The organic carbon mainly exist in aggregates in the 0.25-2 mm and 0.05-0.25 mm diameter in the plough layer, which mainly exist in the 0.25-2 mm in diameter in the bottom layer. Distribution of organic carbon in aggregates in the 0.05-0.25 mm diameter class was highest, followed by the aggregates in the 0.25-2mm diameter class. The organic carbon in aggregates under different tillage systems was in a decreasing order of LM (21.05 g·kg-1)> DP (14.13 g·kg-1)> XM (13.29 g·kg-1)> LF (12.54 g·kg-1) > SH (11.41 g·kg-1). The total organic carbon content showed a significant correlation with the amount of aggregates with diameter >0.005 mm. The results showed that the accumulation of soil organic carbon was mainly affected by aggregates in the >0.005mm diameter class.


2017 ◽  
Vol 63 (12) ◽  
pp. 1644-1660 ◽  
Author(s):  
Chaitanya Prasad Nath ◽  
Tapas Kumar Das ◽  
Kuldeep Singh Rana ◽  
Ranjan Bhattacharyya ◽  
Himanshu Pathak ◽  
...  

2011 ◽  
Vol 71-78 ◽  
pp. 2759-2762
Author(s):  
Juan Peng ◽  
En Ci ◽  
Zhuo Wang Fu ◽  
Ming Gao ◽  
De Ti Xie

Effects of different tillage systems on organic carbon and carbon management index (CMI) in paddy soil of long-term experiment site (since 1990) were studied. The experiment included three tillage treatments: conventional tillage with rotation of rice and winter fallow (CT-r) system, no-tillage and ridge culture with rotation of rice and rape (RT-rr) system, and conventional tillage with rotation of rice and rape (CT-rr) system. Soil labile organic carbon measured by oxidation of KMnO4 respond rapidly to carbon supply changes, and it is considered as an important indicator of soil quality. Compared with CT-r system, long-term RT-rr system significantly increased total organic carbon and labile organic carbon in surface soil (0-10 cm and10-20 cm). The proportion of labile organic carbon to total organic carbon under RT-rr system was higher than other tillage systems. The carbon management index (CMI) is derived from the total soil organic carbon pool and carbon lability and is useful to evaluate the capacity of management systems to promote soil quality. The CMI increased in each layer under RT-rr system, while it decreased under CT-rr system. This indicated that conservation tillage improved the capacity of the management system into promoting soil quality in Sichuan Basin of China.


2011 ◽  
Vol 183-185 ◽  
pp. 2163-2167
Author(s):  
Yan Wu ◽  
Qing Ju Hao ◽  
Chang Sheng Jiang

The effect of different tillage systems on the soil organic carbon (SOC), active organic carbon (AOC) and remaining organic carbon (ROC) were studied in a long-term experiment in Chongqing, China. The experiment included five tillage treatments, which are conventional tillage with rice only system (DP), conventional tillage with rotation of rice and rape system (SH), no-till and ridge culture with rotation of rice and rape system (LM), no-till and plain culture with rotation of rice and rape system (XM) and tillage and ridge culture with rotation of rice and rape system (LF), respectively. The results showed that the content of SOC declined as the soil depth increased, and presented obvious surface enrichment phenomenon under the no-tillage systems. The order of SOC, AOC, ROC and ROC/SOC in the 0–60 cm soil layer under different tillage systems was LM (22.74 g kg-1) > DP (14.57 g kg-1) > XM (13.73 g kg-1) > LF (13.10 g kg-1) > SH (11.92 g kg-1), DP (3.67 g kg-1) > LF (3.49 g kg-1) > LM (3.28 g kg-1) > XM (3.17 g kg-1) > SH (2.69 g kg-1), LM (18.09 g kg-1) > DP (10.34 g kg-1) > XM (10.12 g kg-1) > LF (9.20 g kg-1) > SH (8.80 g kg-1) and LM (85%) > SH (78%) > XM 77%) > LF (75%) > DP (74%). Compared with other systems, LM significantly increased SOC, ROC and ROC/SOC, which indicated long-term LM system performed good effect for carbon sequestration.


2001 ◽  
Vol 10 (2) ◽  
pp. 81-90 ◽  
Author(s):  
S. KOSUTIC ◽  
D. FILIPOVIC ◽  
Z. GOSPODARIC

From 1996 to 1998 five different tillage systems were compared in maize (Zea mays L.) and winter wheat (Triticum aestivum L.) production on one experimental field (silty loam - Albic Luvisol) located in north-west Slavonia, Croatia. The compared tillage systems were as follows: conventional tillage (CT), reduced conventional tillage (RT), conservation tillage I (CP), conservation tillage II (CM), no-tillage system (NT). The aim of the research was to determine the influence of those tillage systems on the energy and labour requirement, and on the yield of the maize and of the winter wheat. Comparing the energy requirement to CT system, RT system required 16.1% less, CP system 26.9% less, CM system 40.8% less, while NT system required even 85.1% less energy per hectare. The labour requirement showed that RT system saved 16.4%, while CP system required 20.5% less, CM system 39.5% less labour respectively. NT system saved 82.1% of labour in comparison to CT system. The first year greatest maize yield of 7.78 Mg ha-1 was achieved with CT system, while other systems in comparison to CT system, except RT, achieved not significantly lower yields. The second year greatest winter wheat yield of 5.89 Mg ha-1 achieved CM system, while other systems in comparison to CM, except RT, achieved not significantly lower yields.


Sign in / Sign up

Export Citation Format

Share Document