Fundamental parenchyma cells are involved in Na+ and Cl– removal ability in rice leaf sheath

2019 ◽  
Vol 46 (8) ◽  
pp. 743 ◽  
Author(s):  
Sarin Neang ◽  
Marjorie de Ocampo ◽  
James A. Egdane ◽  
John D. Platten ◽  
Abdelbagi M. Ismail ◽  
...  

Salt sensitivity in rice plants is associated with the accumulated amount of Na+ and Cl– in shoots and, more significantly, in photosynthetic tissues. Therefore, salt removal ability at the leaf sheath level is an important mechanism of salt tolerance. In the present study we attempted to determine whether rice leaf sheaths excluded Cl– as well as Na+, and to identify the tissues that were involved in the removal ability of both ions. In two rice genotypes, salt-tolerant FL478 and -sensitive IR29, leaf sheaths excluded Na+ and Cl– under NaCl treatment as estimated using their sheath:blade ratios. The sheath:blade ratio of Na+ but not of Cl–, was increased by NaCl treatment. Under NaCl treatment, Na+ concentration was higher in the basal leaf sheath, whereas Cl– concentration was higher in the middle and tip parts. At the tissue level, fundamental parenchyma cells of leaf sheaths retained the highest amounts of Na and Cl when treated with high amount of NaCl. These results imply that the leaf sheath potentially functions to remove excess Na+ and Cl– from xylem vessels in different locations along the axis, with the fundamental parenchyma cells of leaf sheaths being involved in over-accumulation of both Na+ and Cl–.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Prasanta K. Subudhi ◽  
Rama Shankar ◽  
Mukesh Jain

AbstractSalinity is a major abiotic constraint for rice farming. Abundant natural variability exists in rice germplasm for salt tolerance traits. Since few studies focused on the genome level variation in rice genotypes with contrasting response to salt stress, genomic resequencing in diverse genetic materials is needed to elucidate the molecular basis of salt tolerance mechanisms. The whole genome sequences of two salt tolerant (Pokkali and Nona Bokra) and three salt sensitive (Bengal, Cocodrie, and IR64) rice genotypes were analyzed. A total of 413 million reads were generated with a mean genome coverage of 93% and mean sequencing depth of 18X. Analysis of the DNA polymorphisms revealed that 2347 nonsynonymous SNPs and 51 frameshift mutations could differentiate the salt tolerant from the salt sensitive genotypes. The integration of genome-wide polymorphism information with the QTL mapping and expression profiling data led to identification of 396 differentially expressed genes with large effect variants in the coding regions. These genes were involved in multiple salt tolerance mechanisms, such as ion transport, oxidative stress tolerance, signal transduction, and transcriptional regulation. The genome-wide DNA polymorphisms and the promising candidate genes identified in this study represent a valuable resource for molecular breeding of salt tolerant rice varieties.


2018 ◽  
Vol 15 (2) ◽  
pp. 69-80
Author(s):  
B Hossen ◽  
MS Haque ◽  
K Miah ◽  
MZ Tareq

Salinity screening of 24 rice genotypes was performed at the reproductive stage for evaluating their salt tolerance level. On the basis of yield and yield components, genotypes were categorized as tolerant, susceptible and moderately tolerant. PBRC-30, Ashfal, Horkuch, STL-20 and Pokkali were found as tolerant while Binadhan-7, S-39 L-11, S-37 L- 27, S-37 L-36 and S-37 L-39 were found as susceptible. Selected three SSR markers viz. RM336, RM21 and RM510 were used to determine salinity tolerance. The genetic diversity was ranges from 0.8194 to 0.8854 with an average of 0.8530. The highest PCI value was 0.8742 and the lowest was 0.8004 from RM510 and RM21, respectively. The UPGMA clustering system generated six genetic clusters. The highest genetically dissimilarity of (Cluster 1) vs (Cluster 2 sub-cluster A) and the crossing would be helpful for salt tolerant rice development. Thus, selected SSR primers and genotypes would be useful in marker assisted breeding, quantitative trait loci (QTL) mapping and gene pyramiding in breeding programmed for improvement of rice for salt tolerance.SAARC J. Agri., 15(2): 69-80 (2017)


2018 ◽  
Vol 16 (1) ◽  
pp. 65-77
Author(s):  
M M Islam ◽  
M H Faruqe ◽  
M S Rana ◽  
M Akter ◽  
M A Karim

Soil salinity is one of the most devastating environmental stresses for rice production in the coastal areas of Bangladesh. Improvement in salt tolerance of rice is an important way for the economic utilization of coastal zones. An experiment was conducted at the vinyl house of the Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Bangladesh during December 2016 to April 2017 to determine the effects of different salinity levels on the yield and yield components of some rice (Oryza sativa L.) genotype sand finally, screening of rice genotypes for salt tolerance. The experiment containing four treatments was laid out in a complete randomized design with five replications. The treatments were four levels of saline water with electrical conductivities at control (0.3 dSm-1), 5, 10 and 15dSm-1. Based on screening at germination stage, relatively salt-tolerant eleven genotypes with two check varieties were used in this experiment. The study showed that increase in salinity level significantly decreased yield and yield contributing characters of rice. However, among the eleven, three genotypes (Chapali, Patnai 23 and Soloi) were considered as moderately salt tolerant at 15 dSm-1 on the basis of their yields and yield contributing characteristics such as plant height reduction, total tiller reduction, effective tiller reduction, reduction of fertile grains per panicle, grain yield and relative grain yield. Therefore, Chapali, Patnai 23 and Soloi might be recommended as moderately salt tolerant rice genotypes. The Agriculturists 2018; 16(1) 65-77


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Sarin Neang ◽  
Itsuki Goto ◽  
Nicola Stephanie Skoulding ◽  
Joyce A. Cartagena ◽  
Mana Kano-Nakata ◽  
...  

Abstract Background A significant mechanism of salt-tolerance in rice is the ability to remove Na+ and Cl− in the leaf sheath, which limits the entry of these toxic ions into the leaf blade. The leaf sheath removes Na+ mainly in the basal parts, and Cl− mainly in the apical parts. These ions are unloaded from the xylem vessels in the peripheral part and sequestered into the fundamental parenchyma cells at the central part of the leaf sheath. Results This study aimed to identify associated Na+ and Cl− transporter genes with this salt removal ability in the leaf sheath of rice variety FL 478. From 21 known candidate Na+ and Cl− transporter rice genes, we determined the salt responsiveness of the expression of these genes in the basal and apical parts, where Na+ or Cl− ions were highly accumulated under salinity. We also compared the expression levels of these transporter genes between the peripheral and central parts of leaf sheaths. The expression of 8 Na+ transporter genes and 3 Cl− transporter genes was up-regulated in the basal and apical parts of leaf sheaths under salinity. Within these genes, OsHKT1;5 and OsSLAH1 were expressed highly in the peripheral part, indicating the involvement of these genes in Na+ and Cl− unloading from xylem vessels. OsNHX2, OsNHX3, OsNPF2.4 were expressed highly in the central part, which suggests that these genes may function in sequestration of Na+ and Cl− in fundamental parenchyma cells in the central part of leaf sheaths under salinity. Furthermore, high expression levels of 4 candidate genes under salinity were associated with the genotypic variation of salt removal ability in the leaf sheath. Conclusions These results indicate that the salt removal ability in rice leaf sheath may be regulated by expressing various Na+ or Cl− transporter genes tissue-specifically in peripheral and central parts. Moreover, some genes were identified as candidates whose expression levels were associated with the genotypic variation of salt removal ability in the leaf sheath. These findings will enhance the understanding of the molecular mechanism of salt removal ability in rice leaf sheath, which is useful for breeding salt-tolerant rice varieties.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Shamim Ahmed ◽  
Tae-Young Heo ◽  
Aritra Roy Choudhury ◽  
Denver I. Walitang ◽  
Jeongyun Choi ◽  
...  

AbstractSalinization of agricultural lands, particularly rice paddies, results in the drastic decline of crop yields. Soil salinization impacts the plant physiology by inducing salt stress which may leads to osmotic stress, ionic stress and water-related nutrient imbalance. These imbalances necessitate the need for plants to produce osmolytes including proline and glycine betaine. This study aimed to elucidate the dynamic changes in proline and glycine betaine accumulation modulated by the inoculation of Brevibacterium linens RS16 in salt-sensitive and moderately salt-tolerant rice plants under salt stress conditions. This study showed the interaction of four major factors including rice genotypes with differing tolerance to salt stress, length of exposure to salt stress, level of salt stress and effects of inoculation. Salt stress resulted in significant reduction in plant growth parameters with the salt-sensitive rice genotype (IR29) having a more significant growth reduction. Both the salt-sensitive and salt-tolerant rice genotypes increased in total proline and glycine betaine accumulation at 3 days and 10 days after subjecting under 50 mM and 150 mM salt stress conditions. A significant increase in proline and glycine betaine was observed in the salt-sensitive genotype after 10 days under 50 mM and 150 mM salt stress conditions. Inoculation of the rice genotypes with B. linens RS16 resulted in the improvement of plant growth parameters in both rice genotypes, and total proline and glycine betaine accumulation, especially in IR29. This study showed that proline and glycine betaine are compatible osmolytes of rice under salt stress, and that inoculation of rice genotypes with B. linens RS16 mediated salt tolerance through improvement of plant growth parameters and proline and glycine betaine accumulation in rice plants.


2016 ◽  
Vol 22 ◽  
pp. 75-84
Author(s):  
Biswajit Sahoo ◽  
Tushar Kanti Dangar

Interactions of six entomopathogenic fungi viz. Cordyceps (2 strains), Beauveria (1 strain) and Metarhizium (3 strains) spp. of rice leaf folder (LF, Cnaphalocrocismedinalis) with thephyllophytic (phyllospheric and phylloplanic) bacteria (n=35) and fungi (n=4) isolated at pre-flowering stages of fourcultivated rice (Oryzasativa L.) var. Lalat, Swarna, Swarna-Sub1 and Naveenwere assessed to reveal possibility of intergroup inhibition in the field. Dynamics of the phyllophytic microbes revealed that the phyllospheric bacterial population (3.59 to 4.10 log CFU/cm2) was more than those of the phylloplane (1.56 to 1.75 log CFU/cm2) of different plants. The phyllophytes of the four rice genotypes decreased in the order of Swarna-Sub1 > Swarna > Lalat > Naveen. The fungal pathogens of LF viz. C. brongniartii (TF6 and TF6-1A), B.bassiana (TF6-1B) and M. anisopliae (TF19, TF19- 3A and TF19-3B) were not inhibited by any of the phyllophytic organisms which proved that they can be applied on the canopy of the rice plants to control the pests.ECOPRINT 22: 75-84, 2015


2001 ◽  
Vol 44 (3) ◽  
pp. 463-466 ◽  
Author(s):  
Y. Miki ◽  
M. Katoh ◽  
S. Hisajima

Author(s):  
Rinny Swain ◽  
Surabhika Panda ◽  
Gyana Ranjan Rout

Silicon (Si) is known to improve salt tolerance in rice. However, the correlation of silicon with different physiological and biochemical indices of salt tolerance is not properly understood. Two rice genotypes with different silicon accumulation ability were evaluated along with two standard checks in response to 10 dS/m salinity stress (NaCl) and external Si source (1mM) during their seedling stage. All evaluated genotypes showed an evident decrease in biomass and chlorophyll content under salinity stress, while reporting an enhances in Si accumulation, Na+/K+ ratio, proline, electrolyte leakage, lipid peroxidation, hydrogen peroxide, and antioxidant activities. The external Si supplementation significantly improved rice tolerance to salinity through increased Si content, low Na+/K+ ratio, better osmolyte production, reduced membrane permeability, and improved antioxidant enzyme activities. Multivariate factor analysis with principal component factor statistically correlates and visualizes silicon accumulation with salt tolerance indices. The Hierarchical clustering in rice obtained based on the study of salt tolerance indices, distinguishes genotypes with different treatments into three clusters. In conclusion, the clustering grouped salt-tolerant Var.Lunishree and salt stress high silicon accumulating Var.Swarna together validates silicon mitigating effect on salinity in rice.


2013 ◽  
Vol 19 (2) ◽  
pp. 57-65
Author(s):  
MH Kabir ◽  
MM Islam ◽  
SN Begum ◽  
AC Manidas

A cross was made between high yielding salt susceptible BINA variety (Binadhan-5) with salt tolerant rice landrace (Harkuch) to identify salt tolerant rice lines. Thirty six F3 rice lines of Binadhan-5 x Harkuch were tested for salinity tolerance at the seedling stage in hydroponic system using nutrient solution. In F3 population, six lines were found as salt tolerant and 10 lines were moderately tolerant based on phenotypic screening at the seedling stage. Twelve SSR markers were used for parental survey and among them three polymorphic SSR markers viz., OSR34, RM443 and RM169 were selected to evaluate 26 F3 rice lines for salt tolerance. With respect to marker OSR34, 15 lines were identified as salt tolerant, 9 lines were susceptible and 2 lines were heterozygous. While RM443 identified 3 tolerant, 14 susceptible and 9 heterozygous rice lines. Eight tolerant, 11 susceptible and 7 heterozygous lines were identified with the marker RM169. Thus the tested markers could be efficiently used for tagging salt tolerant genes in marker-assisted breeding programme.DOI: http://dx.doi.org/10.3329/pa.v19i2.16929 Progress. Agric. 19(2): 57 - 65, 2008


Sign in / Sign up

Export Citation Format

Share Document