Molecular phylogeny and historical biogeography of the cosmopolitan parasitic wasp subfamily Doryctinae (Hymenoptera:Braconidae)
The phylogenetic relationships among representatives of 64 genera of the cosmopolitan parasitic wasps of the subfamily Doryctinae were investigated based on nuclear 28S ribosomal (r) DNA (~650 bp of the D2–3 region) and cytochrome c oxidase I (COI) mitochondrial (mt) DNA (603 bp) sequence data. The molecular dating of selected clades and the biogeography of the subfamily were also inferred. The partitioned Bayesian analyses did not recover a monophyletic Doryctinae, though the relationships involved were only weakly supported. Strong evidence was found for rejecting the monophylies of both Doryctes Haliday, 1836 and Spathius Nees, 1818. Our results also support the recognition of the Rhaconotini as a valid tribe. A dispersal–vicariance analysis showed a strong geographical signal for the taxa included, with molecular dating estimates for the origin of Doryctinae and its subsequent radiation both occurring during the late Paleocene–early Eocene. The divergence time estimates suggest that diversification in the subfamily could have in part occurred as a result of continental break-up events that took place in the southern hemisphere, though more recent dispersal events account for the current distribution of several widespread taxa.