scholarly journals The Regge Pole Model and Forward Elastic Data at High Energies ? An Analysis

1981 ◽  
Vol 34 (6) ◽  
pp. 611
Author(s):  
Mujahid Kamran

Using O"to" Re/lm and relevant forward differential cross-section data up to the highest available energies we determine the P, f, p, OJ, A2 intercepts and forward residues in nN, NN and KN scattering. We find evidence for low-lying contributions in the nN and NN non-flip amplitudes including the 0" trajectory in the nN case. We also test various phenomenological notions like exchange degeneracy (EXD) , p universality, OJ universality etc. against our parameter values. Comparison is made with other works.

1970 ◽  
Vol 2 (11) ◽  
pp. 2613-2627 ◽  
Author(s):  
Donald M. Austin ◽  
William H. Greiman ◽  
William Rarita

2001 ◽  
Vol 16 (37) ◽  
pp. 2387-2397 ◽  
Author(s):  
BHASKAR DE ◽  
S. BHATTACHARYYA ◽  
P. GUPTAROY

The purpose of this paper is to focus on the possible effective role of two relatively less-known models in analyzing comprehensively the very up-to-date data on proton–air inelastic cross-sections at high and ultra high energies. The standard versions of all the familiar simulation-based multiparticle production models, which nowadays normally claim front-ranking positions, address on the contrary, only a small part of the cross-section data for a very limited or sectional range of energy values. Against this background, the relevance and impact of the present study have finally been highlighted.


1974 ◽  
Vol 52 (13) ◽  
pp. 1155-1159
Author(s):  
S. Kogitz ◽  
R. K. Logan

We present a model of backward π+p, π−p, and π−p charge exchange scattering consistent with our earlier approach to forward π−p charge exchange and backward π+p. We consider two body differential cross section data which exhibits a dip–bump structure as well as nonzero polarization. This is explained in terms of a dominant Regge pole vanishing at the dip accompanied by a background. The background is primarily responsible for the large u behavior of the cross section which includes the rise after the dip. It is assumed that the presence of nonzero polarization dictates this behavior. We isolate the I = 3/2 amplitude in π−p backwards and determine the I = 1/2 amplitude from π+p backwards. A prediction for π−p → nπ0 follows.


2015 ◽  
Vol 24 (11) ◽  
pp. 1550082 ◽  
Author(s):  
R. I. Badran ◽  
A. I. Istaiti ◽  
W. N. Mashaqbeh ◽  
I. H. Al-Lehyani

Regge pole model is adopted to account for the angular distribution at backward angles for a set of elastic scattering processes of incident [Formula: see text]-particles by different isotopes of nickel ions, [Formula: see text]Ni, at different laboratory energies above Coulomb barrier. The reproduction of cross-sections at backward angles is preceded by an attempt to fit the experimental data at forward angles of the scattering. Three-parameter McIntyre model which is based on concept of strong absorption parametrization of the scattering matrix elements, has been employed to analyze and reproduce the experimental data of angular distribution of different elastic scattering reactions at forward angles. The three parameters extracted from McIntyre model analysis are employed as fixed entries in the fitting process of the full angle-range of angular distribution where another four free parameters are employed using the Regge pole model. Diffractive features observed in the angular distributions are studied. The Fresnel-type diffraction pattern is found dominant for all investigated elastic scatterings where Coulomb interaction is strong. The interaction radius of elastic scattering is found decreasing and the total cross-section increasing when the incident projectile energy increases. Moreover, the interaction radius and total reaction cross-section are found increasing with the increase in the size of target ion. Such diffractive behavior is consistent with the prescriptions of strong absorption model (SAM). Furthermore, the explanation of the diffractive features of studied elastic scattering reactions is model-independent. The Regge pole analysis reveals the existence of a pole which has its location, width, amplitude and phase angle exhibiting a common peak at energy of 24.1[Formula: see text]MeV with oscillatory behaviour at energies around this peak energy, for all elastic scattering of alpha particle on isotopes of Ni targets except that of [Formula: see text]Ni target which exhibits extra peaks for energy larger than 24.1[Formula: see text]MeV. We believe that the presence of poles is responsible for the oscillatory structure of the backward cross-sections. The variation of Regge pole parameters with both incident energy and size of target nucleus is illustrated.


1980 ◽  
Vol 33 (2) ◽  
pp. 209 ◽  
Author(s):  
M Saleem ◽  
M Rafique ◽  
Sanaullah Bhatti ◽  
Fazal-e Aleem

By a phenomenological choice of the residue functions, a very good fit with experiment for the pion-nucleon charge exchange reaction at Fermilab energies is obtained on a simple Regge-pole model using a quadratic p trajectory and energy-independent parameters.


Sign in / Sign up

Export Citation Format

Share Document