Dry Matter Partitioning and Vegetative Growth of Young Peach Trees Under Water Stress

1990 ◽  
Vol 17 (1) ◽  
pp. 23 ◽  
Author(s):  
SL Steinberg ◽  
JC Miller ◽  
MJ Mcfarland

Water stress affected the growth and dry matter partitioning of young peach trees grown in pots in a greenhouse. When the trees were subjected to four watering treatments, 100, 75, 50 and 25% of full water, total dry matter production was reduced with each incremental decrease in applied water. Despite large differences in biomass production, the difference in midday leaf water potential between the wettest and driest treatment was not greater than 0.6 MPa. This was partially attributed to lower leaf conductance in the drier treatments. A reduction or halting of lateral branching and new leaf production was observed soon after water stress was imposed, and these two factors were the major contributors to differences in tree biomass production. Root production was maintained at similar levels in all but the severest stress treatment. As a result, the root fraction of total biomass increased from 0.4 to 0.6 as the level of stress increased from 75 to 50% of full water. Currently growing leaves and internodes of the drier treatments reached maturity at a smaller size. In contrast to internode lengthening, leaf area expansion slowed in the final growth phase. This correlated well with leaf unfolding.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amanullah ◽  
Shah Khalid ◽  
Farhan Khalil ◽  
Mohamed Soliman Elshikh ◽  
Mona S. Alwahibi ◽  
...  

AbstractThe dry matter partitioning is the product of the flow of assimilates from the source organs (leaves and stems) along the transport route to the storage organs (grains). A 2-year field experiment was conducted at the agronomy research farm of the University of Agriculture Peshawar, Pakistan during 2015–2016 (Y1) to 2016–2017 (Y2) having semiarid climate. Four summer crops, pearl millet (Pennisetum typhoidum L.), sorghum (Sorghum bicolor L.) and mungbean (Vigna radiata L.) and pigeonpea (Cajanus cajan L.) and four winter crops, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), fababean (Vicia faba) and rapeseed (Brassica napus) were grown under two irrigation regimes (full vs. limited irrigation) with the pattern of growing each crop either alone as sole crop or in combination of two crops in each intercropping system under both winter and summer seasons. The result showed that under full irrigated condition (no water stress), all crops had higher crop growth rate (CGR), leaf dry weight (LDW), stem dry weight (SDW), and spike/head dry weight (S/H/PDW) at both anthesis and physiological maturity (PM) than limited irrigated condition (water stress). In winter crops, both wheat and barley grown as sole crop or intercropped with fababean produced maximum CGR, LDW, SDW, S/H/PDW than other intercrops. Among summer crops, sorghum intercropped either with pigeon pea or with mungbean produced maximum CGR, LDW, SDW, and S/H/PDW at both growth stages. Sole mungbean and pigeon pea or pigeon pea and mungbean intercropping had higher CGR, LDW, SDW, S/H/PDW than millet and sorghum intercropping. On the other hand, wheat and barley grown as sole crops or intercropped with fababean produced maximum CGR, LDW, SDW, and S/H/PDW than other intercrops. Fababean grown as sole crop or intercropped with wheat produced higher CGR, LDW, SDW, and S/H/PDW at PM than intercropped with barley or rapeseed. From the results it was concluded that cereal plus legume intercropping particularly wheat/fababean in winter and sorghum/pigeon pea or sorgum/mungbean in summer are the most productive intercropping systems under both low and high moisture regimes.


2014 ◽  
Vol 23 (4) ◽  
pp. 480 ◽  
Author(s):  
W. Matt Jolly ◽  
Ann M. Hadlow ◽  
Kathleen Huguet

Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples from Pinus contorta for two growing seasons and quantified their LFMC, relative water content (RWC) and dry matter chemistry. LFMC quantifies the amount of water per unit fuel dry weight whereas RWC quantifies the amount of water in the fuel relative to how much water the fuel can hold at saturation. RWC is generally a better indicator of water stress than is LFMC. We separated water mass from dry mass for each sample and we attempted to best explain the seasonal variations in each using our measured physiochemical variables. We found that RWC explained 59% of variation in foliar water mass. Additionally, foliar starch, sugar and crude fat content explained 87% of the variation in seasonal dry mass changes. These two models combined explained 85% of the seasonal variations in LFMC. These results demonstrate that changes to dry matter exert a stronger control on seasonal LFMC dynamics than actual changes in water content, and they challenge the assumption that LFMC variations are strongly related to water stress. This methodology could be applied across a range of plant functional types to better understand the factors that drive seasonal changes in LFMC and live fuel flammability.


2006 ◽  
Vol 86 (3) ◽  
pp. 809-815 ◽  
Author(s):  
Youbin Zheng ◽  
Mike Dixon ◽  
Praveen Saxena

Current field cultivation and wild-harvest methods for the medicinal plant Echinacea are struggling to meet the requirements for a high-quality, uniformly produced crop for human consumption. To help meet this challenge, the potential of using a greenhouse production system for Echinacea production was explored. Echinacea purpurea (L.) Moench and angustifolia DC. var. angustifolia plants were grown in three types of greenhouse production systems: (1) deep flow solution culture (D), (2) pots with either Pro-Mix (P) or (3) sand (S). Plants were irrigated with one of three nutrient solutions containing NO3−/NH4+ ratios of 7:1, 5:1 or 3:1, respectively. The plants grown in the Pro-Mix and the sand systems were either well-watered or subjected to periodical water stress. The results obtained after 12 wk of growth showed that Echinacea root production in the greenhouse systems was comparable with or better than that in the field. Based on root and total biomass production, the Pro-Mix system was the best production system for both E. angustifolia and E. purpurea. In most cases, the NO3−/NH4+ ratio did not have significant effects on the growth of either species. When effects were seen, however, higher NO3−/NH4+ levels generally resulted in greater leaf area, root and total biomass, and a higher root/shoot ratio. Mild periodic water stress did not affect the root/shoot ratio or the root biomass in either species. The application of a periodic water stress reduced leaf area of both species, but a reduction in total biomass was only observed in E. purpurea. Key words: Echinacea, greenhouse production, hydroponic production, medicinal plant, NO3−/NH4+ ratio, water stress


1960 ◽  
Vol 54 (2) ◽  
pp. 158-165 ◽  
Author(s):  
D. Reid ◽  
D. S. MacLusky

1. In an experiment conducted on an established perennial rye-grass/white clover sward close cutting was carried out over a 3-year period (1956–58), either with a lawn mower to simulate gang mowing or with a reciprocating-knife mower. The sward was cut either six or eight times in each season, and received 0 or 2 cwt. ‘Nitro-Chalk’/acre for each cut.2. Swards cut with the gang mower yielded from 3·5 to 12·5% more herbage dry matter than swards cut with the reciprocating-knife mower and also gave a greater mean yield of crude protein.3. The difference in dry-matter yield between swards cut with each of the mowers is attributed to the slightly closer cutting level of the gang mower having a greater inhibiting effect on flower development in the grasses and hence stimulating leaf production and increasing total yields.4. In the second and third years of the experiment swards cut with the gang mower outyielded those cut with the reciprocating-knife mower by a proportionately greater amount when eight cuts rather than six cuts were taken in the season.5. When no nitrogenous fertilizer was applied the proportion of broad-leaved weeds in the sward increased more rapidly over the 3-year period where the herbage was cut with the gang mower rather than the reciprocating-knife mower. This disadvantage of gang mowing did not apply where the fertility was maintained at a high level by applications of nitrogenous fertilizer.6. It is concluded that the gang mower is a more suitable machine than the reciprocating-knife mower for close cutting on a field scale.


1995 ◽  
Vol 46 (1) ◽  
pp. 61 ◽  
Author(s):  
T Tangpremsri ◽  
S Fukai ◽  
KS Fischer

From 47 S2 lines which had been extracted from a random mated population of sorghum, eight lines for a glasshouse experiment and four lines for a field experiment were divergently selected for variation in osmotic adjustment, and were grouped into two, High and Low osmotic adjustment (OA). Both the glasshouse and field experiments examined whether osmotic adjustment modified the plants' response to soil water deficit and also whether grain sink demand for assimilates, varied by removal of 50% spikelets, affected osmotic adjustment. In each experiment, there were well-watered control and water stress treatments. In both experiments, the dawn osmotic potential in the High OA group was always lower than in the Low OA group under water limiting conditions, and the difference was significant after anthesis. The difference in osmotic potential was about 0.1 MPa in the field and up to 0.25 MPa in the glasshouse. In the glasshouse experiment, removal of 50% spikelets at anthesis significantly decreased osmotic potential during grain filling, suggesting that osmotic adjustment is influenced by the availability of assimilates in the leaves. Under well-watered conditions, the two groups behaved very similarly in terms of maximum leaf area, green leaf area retention during grain filling, total dry matter production, grain yield and grain number in both experiments. Under water-limiting conditions, the High OA group produced larger maximum leaf area and had better leaf retention during grain filling. Despite similar water use, total dry matter was also significantly higher in the High OA group though the difference was small. Grain number was also greater in this group in both experiments, whereas grain yield was significantly higher in the High OA group in the field, but not in the glasshouse where severe water stress developed more rapidly. It is concluded that the adverse effect of water stress can be reduced by adopting sorghum genotypes with high osmotic adjustment. However, selection for high osmotic adjustment needs to ensure that osmotic adjustment is not solely due to small head size.


OENO One ◽  
2005 ◽  
Vol 39 (1) ◽  
pp. 1 ◽  
Author(s):  
María Gómez-del-Campo ◽  
Pilar Baeza ◽  
C. Ruiz ◽  
José Ramón Lissarrague

<p style="text-align: justify;">Three-year-old grapevines of four cultivars (Garnacha tinta (Grenache noir), Tempranillo, Chardonnay and Airén) were grown on 35 L container under full irrigation and restricted irrigation conditions in order to determine the effect of water stress on carbohydrate allocation. Total grapevine dry matter was measured at pruning, fruitset, veraison and harvest. Roots, wood, shoots, leaves and clusters were dried separately. Shoots were the most affected organs by water stress, while wood was the least affected. Vines under water stress partitioned more dry matter to wood and roots to the detriment of fruits and shoots. The period from fruitset to veraison was the most active for dry matter accumulation under conditions of stress, whereas non-water stressed vines accumulated more dry matter from veraison to harvest. Under both irrigation treatments, fruits competed with roots for dry matter partitioning. Irrigation treatment and cultivar determined fruit size. Fruit size determined dry matter partitioning between organs and the dry matter accumulation pattern.</p>


Sign in / Sign up

Export Citation Format

Share Document