De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content

2014 ◽  
Vol 23 (4) ◽  
pp. 480 ◽  
Author(s):  
W. Matt Jolly ◽  
Ann M. Hadlow ◽  
Kathleen Huguet

Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples from Pinus contorta for two growing seasons and quantified their LFMC, relative water content (RWC) and dry matter chemistry. LFMC quantifies the amount of water per unit fuel dry weight whereas RWC quantifies the amount of water in the fuel relative to how much water the fuel can hold at saturation. RWC is generally a better indicator of water stress than is LFMC. We separated water mass from dry mass for each sample and we attempted to best explain the seasonal variations in each using our measured physiochemical variables. We found that RWC explained 59% of variation in foliar water mass. Additionally, foliar starch, sugar and crude fat content explained 87% of the variation in seasonal dry mass changes. These two models combined explained 85% of the seasonal variations in LFMC. These results demonstrate that changes to dry matter exert a stronger control on seasonal LFMC dynamics than actual changes in water content, and they challenge the assumption that LFMC variations are strongly related to water stress. This methodology could be applied across a range of plant functional types to better understand the factors that drive seasonal changes in LFMC and live fuel flammability.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amanullah ◽  
Shah Khalid ◽  
Farhan Khalil ◽  
Mohamed Soliman Elshikh ◽  
Mona S. Alwahibi ◽  
...  

AbstractThe dry matter partitioning is the product of the flow of assimilates from the source organs (leaves and stems) along the transport route to the storage organs (grains). A 2-year field experiment was conducted at the agronomy research farm of the University of Agriculture Peshawar, Pakistan during 2015–2016 (Y1) to 2016–2017 (Y2) having semiarid climate. Four summer crops, pearl millet (Pennisetum typhoidum L.), sorghum (Sorghum bicolor L.) and mungbean (Vigna radiata L.) and pigeonpea (Cajanus cajan L.) and four winter crops, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), fababean (Vicia faba) and rapeseed (Brassica napus) were grown under two irrigation regimes (full vs. limited irrigation) with the pattern of growing each crop either alone as sole crop or in combination of two crops in each intercropping system under both winter and summer seasons. The result showed that under full irrigated condition (no water stress), all crops had higher crop growth rate (CGR), leaf dry weight (LDW), stem dry weight (SDW), and spike/head dry weight (S/H/PDW) at both anthesis and physiological maturity (PM) than limited irrigated condition (water stress). In winter crops, both wheat and barley grown as sole crop or intercropped with fababean produced maximum CGR, LDW, SDW, S/H/PDW than other intercrops. Among summer crops, sorghum intercropped either with pigeon pea or with mungbean produced maximum CGR, LDW, SDW, and S/H/PDW at both growth stages. Sole mungbean and pigeon pea or pigeon pea and mungbean intercropping had higher CGR, LDW, SDW, S/H/PDW than millet and sorghum intercropping. On the other hand, wheat and barley grown as sole crops or intercropped with fababean produced maximum CGR, LDW, SDW, and S/H/PDW than other intercrops. Fababean grown as sole crop or intercropped with wheat produced higher CGR, LDW, SDW, and S/H/PDW at PM than intercropped with barley or rapeseed. From the results it was concluded that cereal plus legume intercropping particularly wheat/fababean in winter and sorghum/pigeon pea or sorgum/mungbean in summer are the most productive intercropping systems under both low and high moisture regimes.


Author(s):  
Fernando J. da Silva Júnior ◽  
José A. Santos Júnior ◽  
Manassés M. da Silva ◽  
Ênio F. de F. e Silva ◽  
Edivan R. de Souza

ABSTRACT Hydroponic cultivation using saline waters is an alternative for agricultural production, especially in the cultivation of vegetables. Therefore, the present work was conducted with the objective of evaluating the water consumption, water use efficiency and water content, as well as dry matter partitioning of chives (Allium schoenoprasum), cv. Todo Ano Evergreen – Nebuka exposed to six levels of nutrient solution salinity (1.5, 3.0, 4.5, 6.0, 7.5 and 9.0 dS m-1), applied at two circulation frequencies (twice a day at 8 and 16 h; and three times a day - at 8, 12 and 16 h). The level in the nutrient solution reservoir, which decreased according to the water consumption by plants, was replaced with the respective saline water (Experiment I) and supply water (Experiment II). Both experiments used a completely randomized design, in a 6 x 2 factorial scheme, with five replicates. It was observed that increased circulation frequency and the use of supply water in the replacement mitigated the effects of salinity on water consumption, water use efficiency and water content in the plant. However, with the increase in nutrient solution electrical conductivity, dry matter allocation in the roots increased, to the detriment of the shoots.


Irriga ◽  
1998 ◽  
Vol 3 (3) ◽  
pp. 81-88
Author(s):  
Carlos Augusto Lima Porto ◽  
Antonio Evaldo Klar ◽  
José Vicente Vasconcelos

EFEITOS DO DÉFICIT HÍDRICO EM PARÂMETROS FISIOLÓGICOS DE FOLHAS DE SORGO (Sorghum bicolor, L.)  Carlos Augusto Lima PortoAntonio Evaldo Klar(2)José Vicente VasconcelosDepartamento de Engenharia Rural – Faculdade de Ciências Agronômicas – UNESPFone: (014) 821-3883  Fax: (014) 821-343818603-97’ – Botucatu - SP  1 RESUMO O experimento foi conduzido em casa de vegetação no Departamento de Engenharia Rural da Faculdade de Ciências Agronômicas - UNESP/Botucatu, SP, com delineamento experimental inteiramente casualizado, com 12 repetições. A cultura do sorgo (Sorghum bicolor, L.) foi plantada em vasos que continham 8,0 kg de solo (base em peso de solo seco), pertencente ao grande grupo Terra Roxa Estruturada para os dois tratamentos: a) plantas submetidas a défices  hídricos, sendo irrigadas quando o potencial de água no solo chegava a -1,5 MPa, elevando-o às imediações de -0,01 MPa), e b) plantas irrigadas constantemente por capilaridade. Todas as plantas foram irrigadas aos 55 dias após a emergência e os parâmetros avaliados foram: condutância estomática, potencial de água e teor relativo de água nas folhas mais novas totalmente expandidas, com determinações diárias entre as onze e treze horas, até que o potencial de água no solo atingisse valores em torno de -1,5 MPa. Da análise geral dos dados obtidos, pode-se inferir que a variação no status de água na folha observado através do potencial e do teor relativo de água nas folhas pode ser utilizado para indicar o momento de irrigar; ainda estas medições podem ser indicativas das plantas ou cultivares de sorgo que se mostram mais tolerantes à seca e que o mecanismo de adaptação é o  “avoidance”. UNITERMOS: Condutividade estomática, potencial de água na folha, teor relativo de água na folha,  tolerância à seca.  PORTO, C. A . L.., KLAR, A. E. , VASCONCELLOS, V. J.  Water deficit on physiological parameters of soybean  leaves (Sorghum bicolor L).  2 ABSTRACT A study was carried out at Agricultural Engineering Department, UNESP, Botucatu - SP, with a sorghum crop (Sorghum bicolor, L.) in order to physiologically evaluate the crop response to drought. A completely random design with twelve replications were used. Pots with 8 kg of a medium texture soil (dry weight basis) were used in order to test the influence of the two treatments: a) plants being submitted to a water stress, where irrigation were done when the water potential in the soil (s) were -1,5 MPa, raising it to about -0,01 MPa, and b) plants being always irrigated by capillary. The parameters evaluated were water vapor stomata conductivity, water potential  and relative water content in the leaves.  All plants were irrigated at 55 days after emergency, with daily determinations from eleven AM to thirteen PM, until soil water potential reaches around -1,5MPa. From the general data analysis, it can be inferred that there was a significant variation in the water status in the leaves by determinations of water potential and relative water content in the leaves, indicating that the method may be used to indicate the moment of irrigation and the plants and cultivars more tolerant to drought.  Sorghum plants showed adaptation to water stress under avoidance mechanism. KEYWORDS: Stomata conductivity, water potential in the leaves, relative water content, drought tolerance.


HortScience ◽  
1994 ◽  
Vol 29 (11) ◽  
pp. 1292-1294 ◽  
Author(s):  
William R. Graves

Growth, dry-matter partitioning, and specific mass of lamina of black maple (Acer nigrum Michx.f.) and sugar maple (A. saccharum Marsh.) irrigated at 10-, 26-, and 42-day intervals were compared. Total dry mass, stem length, and surface area of lamina were greater for sugar maple than for black maple for plants irrigated every 10 days. Reducing irrigation frequency curtailed growth of both species, but the reduction was greater for sugar maple than for black maple. The shoot: root ratio was lower for black maple than for sugar maple and was reduced by drought in both species, particularly among plants irrigated every 26 days. Specific mass of lamina increased as plants aged, was greater for black maple than for sugar maple, and decreased in response to irrigation at 42-day intervals. The slower growth, lower shoot: root ratio, and greater specific mass of lamina of black maple indicate this species has a greater capacity to withstand drought than sugar maple.


OENO One ◽  
2005 ◽  
Vol 39 (1) ◽  
pp. 1 ◽  
Author(s):  
María Gómez-del-Campo ◽  
Pilar Baeza ◽  
C. Ruiz ◽  
José Ramón Lissarrague

<p style="text-align: justify;">Three-year-old grapevines of four cultivars (Garnacha tinta (Grenache noir), Tempranillo, Chardonnay and Airén) were grown on 35 L container under full irrigation and restricted irrigation conditions in order to determine the effect of water stress on carbohydrate allocation. Total grapevine dry matter was measured at pruning, fruitset, veraison and harvest. Roots, wood, shoots, leaves and clusters were dried separately. Shoots were the most affected organs by water stress, while wood was the least affected. Vines under water stress partitioned more dry matter to wood and roots to the detriment of fruits and shoots. The period from fruitset to veraison was the most active for dry matter accumulation under conditions of stress, whereas non-water stressed vines accumulated more dry matter from veraison to harvest. Under both irrigation treatments, fruits competed with roots for dry matter partitioning. Irrigation treatment and cultivar determined fruit size. Fruit size determined dry matter partitioning between organs and the dry matter accumulation pattern.</p>


2014 ◽  
Vol 150 ◽  
pp. 198-206 ◽  
Author(s):  
Yi Qi ◽  
Philip E. Dennison ◽  
W. Matt Jolly ◽  
Rachael C. Kropp ◽  
Simon C. Brewer

2014 ◽  
Vol 32 (2) ◽  
pp. 205-212 ◽  
Author(s):  
Fánor Casierra-Posada ◽  
Esteban Zapata-Casierra ◽  
Daniel A. Chaparro-Chaparro

To determine the effects of light quality on the growth indices of plants, Pencas Blancas cultivar chard plantlets were grown for 2 months under five different light treatments, obtained by filtering sunlight through colored polyethylene films. The treatments included: red, blue, green, yellow and transparent cover colors. A transparent cover (white light) was used as the control. The colored covers affected the plant growth. The plants grown under the yellow cover presented a better behavior with regards to growth, taken as: total dry weight per plant, leaf area, specific leaf area, absolute growth rate, relative growth rate, harvestable dry matter and root to shoot ratio. The dry matter partitioning in the leaves and roots was affected by the light quality, but not in the petioles, with a higher accumulation of dry mass in the leaves of plants grown under the yellow cover. As a consequence of the enhanced leaf area in the plants under the yellow cover, they also had the highest water uptake. On the other hand, the highest net assimilation rate value was found in plants grown under the transparent cover. These results open up the possibility of using yellow colored cover in leafy green vegetables, especially in chard plants grown under controlled conditions.


Author(s):  
Fernanda Ferreira de Araújo ◽  
Mirelle Nayana De Sousa Santos ◽  
Nícolas Oliveira de Araújo ◽  
Tania Pires da Silva ◽  
Lucas Cavalcante Costa ◽  
...  

Under cultivation conditions that favor the growth of plant shoot, the adoption of management practices that reduce the size of potato plants can be an alternative to increase the yield of tubers. The objective of this work was to evaluate the effect of paclobutrazol on vegetative growth and dry matter partitioning of the potato plant cv. Markies cultivated under summer conditions in the state of Minas Gerais. Treatments were 0.1, 1.0, 10 and 100 mg L-1 of paclobutrazol (PBZ) applied to the sprouted seeds before planting and control with water. PBZ was efficient in reducing plant height. PBZ treatments at doses 10 and 100 mg L-1 delayed the emergence of shoots and the beginning of plant tuberization. PBZ at 0.1 mg L-1 reduced the lengh of the stem by 18%, but did not differ from the control in relation to fresh and dry mass content, total production, specific gravity and starch content of tubers. Treatment of seed potatoes with PBZ a 0.1 mg L-1 resulted in smaller, more compact plants, which could be suitable for more densely planted in order to maximize plant population and increase economic return per unit of area.


1981 ◽  
Vol 21 (112) ◽  
pp. 498 ◽  
Author(s):  
GD Reddy ◽  
AM Alston ◽  
KG Tiller

Seasonal changes in the concentrations of copper, molybdenum and sulfur in subterranean clover (Trifolium subterraneum), silver grass (Vulpia sp.), Wimmera ryegrass (Lolium rigidum), and capeweed (Arctotheca calendula) growing on lateritic podzolic soils were measured in glasshouse and field studies. The effects of varying soil temperature and water content on the concentrations of copper, molybdenum and sulfur in subterranean clover on a lateritic podzolic soil and a calcareous sand were also investigated. Similar seasonal patterns in plant composition were observed in the glasshouse and the field. The concentration of molybdenum tended to remain constant throughout the season, but that of copper and sulfur declined from autumn to spring; the decline was more rapid in the grasses than in subterranean clover and capeweed. Subterranean clover had higher concentrations of copper and sulfur but lower molybdenum than silver grass or Wimmera ryegrass. Capeweed contained more copper and molybdenum but less sulfur than subterranean clover. The concentrations of molybdenum and sulfur were similar in capeweed and the grasses. lncreasing soil temperature from 12 to 22�C increased the dry matter production and the concentrations of copper and molybdenum (but not sulfur) in subterranean clover on both soils. lncreasing soil water content slightly increased dry matter production and the concentration of molybdenum but had no effect on the concentration of copper and sulfur in subterranean clover. The results are discussed in relation to the health of grazing animals.


Sign in / Sign up

Export Citation Format

Share Document