Developmental capacity of mechanically bisected mouse morulae and blastocysts
Mouse embryos were mechanically bisected at the morula, early blastocyst or expanded blastocyst stages of development and cultured in vitro to the expanded blastocyst stage. Their capacity for postimplantation development was assessed after transfer to pseudopregnant foster mice. Embryos bisected at blastocyst stages had a higher survival rate in vitro than those bisected at the morula stage. Half-embryos had approximately half the number of cells at the blastocyst stage as control embryos, but the proportion of cells in the inner cell mass (ICM) was unaltered. The implantation rate of blastocysts derived from bisected embryos was only slightly lower than that of control embryos, but bisected embryos had a significantly reduced capacity to form fetuses. Histological analyses showed that failure to form a fetus is due to the absence of egg cylinder development, which correlates with the reduced number of cells in the ICM of bisected embryos. Postimplantation viability of half-embryos was significantly higher when blastocysts were transferred to Day-3 rather than Day-4 pseudopregnant recipients, presumably because of an increase in cell number in vivo prior to implantation.