Rangeland condition in relation to environmental variables, grazing intensity and livestock owners' perceptions in semi-arid rangeland in western Iran

2010 ◽  
Vol 32 (4) ◽  
pp. 367 ◽  
Author(s):  
M. Faramarzi ◽  
S. Kesting ◽  
J. Isselstein ◽  
N. Wrage

Rangeland condition has often been assessed in relation to either botanical, edaphic, environmental or management factors. In this investigation, we analysed the interaction of soil and topographic variables, management and range condition against the background of a sociological survey of livestock owners in western Iran to better understand the main influencing factors of rangeland quality in the area. In four grazing areas in Kermanshah differing in grazing pressure, environmental variables and livestock owners’ perceptions on range condition, investigations of botanical composition, soil and topographic variables were carried out on 43 main plots. To evaluate range condition, four factors were considered, namely litter frequency, herbage palatability, amount of biomass, and percentage of bare soil. A questionnaire was used to obtain information about management practices, the perception of livestock owners on range condition and suggested solutions to problems in the different grazing areas. The range condition scores showed that the condition of the sites was either fair or poor. Of the soil and topographic factors, only north-facing aspect explained part of the variation in range condition scores. High grazing intensity was associated with poor range condition. To improve the rangeland condition, measures influencing water availability and a reduction of grazing pressure seem to be more relevant in the study area than fertilisation or seeding.

2019 ◽  
Vol 41 (6) ◽  
pp. 535 ◽  
Author(s):  
C. M. Waters ◽  
S. E. McDonald ◽  
J. Reseigh ◽  
R. Grant ◽  
D. G. Burnside

Demonstrating sustainable land management (SLM) requires an understanding of the linkages between grazing management and environmental stewardship. Grazing management practices that incorporate strategic periods of rest are promoted internationally as best practice. However, spatial and temporal trends in unmanaged feral (goat) and native (kangaroo) populations in the southern Australian rangelands can result land managers having, at times, control over less than half the grazing pressure, precluding the ability to rest pastures. Few empirical studies have examined the impacts of total grazing pressure (TGP) on biodiversity and resource condition, while the inability to manage grazing intensity at critical times may result in negative impacts on ground cover, changes in pasture species composition, increased rates of soil loss and reduce the ability for soils to store carbon. The widespread adoption of TGP control through exclusion fencing in the southern Australian rangelands has created unprecedented opportunities to manage total grazing pressure, although there is little direct evidence that this infrastructure leads to more sustainable land management. Here we identify several key indicators that are either outcome- or activity-based that could serve as a basis for verification of the impacts of TGP management. Since TGP is the basic determinant of the impact of herbivory on vegetation it follows that the ability for rangeland pastoral management to demonstrate SLM and environmental stewardship will rely on using evidence-based indicators to support environmental social licence to operate.


2020 ◽  
Author(s):  
Aliia Gilmullina ◽  
Cornelia Rumpel ◽  
Evgenia Blagodatskaya ◽  
Michaela Dippold ◽  
Frederique Louault ◽  
...  

<p>Grassland management practices, such as grazing with varying animal density and mowing may impact the processes leading to soil organic carbon (SOC) accumulation. Although, they serve similar agricultural purposes, they differ in their effect on plant physiology and their influence on SOC remains uncertain. We hypothesised that both practices affect SOC storage differently due to an altered plant C input and changed growth and physiological response leading consequently to contrasting soil microbial activity.</p><p>Based on this, our experiment included the investigation of three grassland treatments: grazing at two intensities and mowing which are located at the experimental station of SOERE ACBB (Clermont-Ferrand, France). Additionally, we included bare soil and unmanaged abandoned site considering as negative and positive controls, accordingly. The aim of the study was to estimate how grazing and mowing affect SOC chemical characteristics and its link with microbial activity.</p><p>Our results show highest SOC contents under low grazing intensity, whereas SOC content under high grazing intensity was lower and did not differ from abandoned grassland. SOC content under mowing was lowest among all treatments but still higher compared to bare soil. Microbial biomass C (MBC) followed a similar pattern under high grazing intensity and positive control whereas it was similar under mowing and low grazing intensity and lowest under bare soil. Absolute enzyme activities showed a similar tendency as SOC content. However, enzyme activities per MBC resulted in highest values under low grazing intensity and similarly lower values under all other treatments.</p><p>These results demonstrate that microbial parameters responded to management in various ways most probably related to the differences in dung and litter inputs. We suggest that dung input under high grazing intensity increased MBC and consequently compensated for plant removal thus keeping SOC contents increasing. Consequently, grazing at both intensities allows to maintain SOC at similar levels as in absence of management. While on unmanaged land high SOC may be related to absence of harvest, on grazed land it may be related to stimulation of microbial activity due to animal activity. Mowing treatment on the other hand did not allow to increase SOC.</p><p>We conclude that the presence of animals in the system is essential to improve soil heath, biogeochemical cycling, and SOC storage.</p>


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 495d-495
Author(s):  
J. Farias-Larios ◽  
A. Michel-Rosales

In Western Mexico, melon production depends on high-input systems to maximize yield and product quality. Tillage, plasticulture, fumigation with methyl bromide, and fertigation, are the principal management practices in these systems. However, at present several problems has been found: pests as sweetpotato whitefly (Bemisia tabaci Gennadius), aphids (Myzus and Aphis), leafminer (Liryomiza sativae); diseases as Fusarium, Verticilium, and Pseudoperenospora, and weeds demand high pesticide utilization and labor. There is a growing demand for alternative cultural practices, with an emphasis on reducing off-farm input labor and chemicals. Our research is based on use of organic mulches, such as: rice straw, mature maize leaves, banana leaves, sugarcane bagasse, coconut leaves, and living mulches with annual legume cover crop in melons with crop rotation, such as: Canavalia, Stilozobium, Crotalaria, and Clitoria species. Also, inoculations with mycorrhizal arbuscular fungi for honeydew and cantaloupe melon seedlings production are been assayed in greenhouse conditions for a transplant system. The use of life barriers with sorghum, marigold, and other aromatic native plants in conjunction with a colored yellow systems traps for monitoring pests is being studied as well. While that the pest control is based in commercial formulations of Beauveria bassiana for biological control. The first results of this research show that the Glomus intraradices, G. fasciculatum, G. etunicatum, and G. mosseae reached 38.5%, 33.5%, 27.0%, and 31.0% of root infection levels, respectively. Honeydew melons production with rice and corn straw mulches shows an beneficial effect with 113.30 and 111.20 kg/plot of 10 m2 compared with bare soil with 100.20 kg. The proposed system likely also lowers production cost and is applicable to small- and large-scale melon production.


2020 ◽  
Author(s):  
Asma Senoussi ◽  
Iris Schadt ◽  
Soraya Hioun ◽  
Haroun Chenchouni ◽  
Zineddine Saoudi ◽  
...  

1971 ◽  
Vol 22 (1) ◽  
pp. 81 ◽  
Author(s):  
PG Ozanne ◽  
KMW Howes

The applied phosphorus requirement of a pasture sown to subterranean clover was measured with and without grazing. Under moderate grazing pressure, in the year of establishment, the pasture required about 50 % more phosphorus than when ungrazed. In the following season, at a higher stocking rate, the grazed areas needed twice as much phosphorus as the ungrazed to make 90% of their maximum growth. In both years this difference in requirement between stocked and unstocked treatments was present throughout the growing season. Increased phosphorus requirement under grazing is associated with the need for greater uptake of phosphorus under conditions where redistribution of absorbed phosphorus within the plant is prevented by defoliation. It does not appear to be due to effects of defoliation on root size. Nor does it depend on differential light interception or on changes in botanical composition.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1490 ◽  
Author(s):  
Amy Steimke ◽  
Bangshuai Han ◽  
Jodi Brandt ◽  
Alejandro Flores

Hydrologic scientists and water resource managers often focus on different facets of flow regimes in changing climates. The objective of this work is to examine potential hydrological changes in the Upper Boise River Basin, Idaho, USA in the context of biophysical variables and their impacts a key variable governing administration of water resources in the region in an integrated way. This snowmelt-dominated, mountainous watershed supplies water to a semi-arid, agriculturally intensive, but rapidly urbanizing, region. Using the Envision integrated modeling framework, we created a hydrological model to simulate hydrological response to the year 2100 using six alternative future climate trajectories. Annual discharge increased from historical values by 6–24% across all simulations (with an average 13% increase), reflecting an increase in precipitation in the climate projections. Discharge peaked 4–33 days earlier and streamflow center of timing occurred 4–17 days earlier by midcentury. Examining changes in the date junior water rights holders begin to be curtailed regionally (the Day of Allocation), we found that the it occurs at least 14 days earlier by 2100 across all simulations, with one suggesting it could occur over a month earlier. These results suggest that current methods and policies of water rights accounting and management may need to be revised moving into the future.


2015 ◽  
Vol 12 (14) ◽  
pp. 4407-4419 ◽  
Author(s):  
J. L. Olsen ◽  
S. Miehe ◽  
P. Ceccato ◽  
R. Fensholt

Abstract. Most regional scale studies of vegetation in the Sahel have been based on Earth observation (EO) imagery due to the limited number of sites providing continuous and long term in situ meteorological and vegetation measurements. From a long time series of coarse resolution normalized difference vegetation index (NDVI) data a greening of the Sahel since the 1980s has been identified. However, it is poorly understood how commonly applied remote sensing techniques reflect the influence of extensive grazing (and changes in grazing pressure) on natural rangeland vegetation. This paper analyses the time series of Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI metrics by comparing it with data from the Widou Thiengoly test site in northern Senegal. Field data include grazing intensity, end of season standing biomass (ESSB) and species composition from sizeable areas suitable for comparison with moderate – coarse resolution satellite imagery. It is shown that sampling plots excluded from grazing have a different species composition characterized by a longer growth cycle as compared to plots under controlled grazing or communal grazing. Also substantially higher ESSB is observed for grazing exclosures as compared to grazed areas, substantially exceeding the amount of biomass expected to be ingested by livestock for this area. The seasonal integrated NDVI (NDVI small integral; capturing only the signal inherent to the growing season recurrent vegetation), derived using absolute thresholds to estimate start and end of growing seasons, is identified as the metric most strongly related to ESSB for all grazing regimes. However plot-pixel comparisons demonstrate how the NDVI/ESSB relationship changes due to grazing-induced variation in annual plant species composition and the NDVI values for grazed plots are only slightly lower than the values observed for the ungrazed plots. Hence, average ESSB in ungrazed plots since 2000 was 0.93 t ha−1, compared to 0.51 t ha−1 for plots subjected to controlled grazing and 0.49 t ha−1 for communally grazed plots, but the average integrated NDVI values for the same period were 1.56, 1.49, and 1.45 for ungrazed, controlled and communal, respectively, i.e. a much smaller difference. This indicates that a grazing-induced development towards less ESSB and shorter-cycled annual plants with reduced ability to turn additional water in wet years into biomass is not adequately captured by seasonal NDVI metrics.


1992 ◽  
Vol 70 (10) ◽  
pp. 1931-1939 ◽  
Author(s):  
M. R. T. Dale ◽  
A. G. Thomas ◽  
E. A. John

The relationship between the weed communities and environmental variables such as soil, crop, and management was investigated in two provinces of Canada. The frequencies of weed species were recorded in cereal and oilseed fields in Saskatchewan (2244 fields over 4 years) and Manitoba (864 fields over 3 years), Canada. Information on some of the physical characteristics of the fields and on the management practices imposed on them was also collected, in part by questionnaire. The two kinds of data were ordinated together using canonical correspondence analysis to assess the relationships between the species and the environmental variables. In the Saskatchewan data, there was a clear and consistent separation of the species into groups along an axis correlated with soil zone and the associated climatic gradient. In the Manitoba data, the same groups of species did not separate as clearly or as consistently, although geographic region was a major determinant of the weed communities. The greater variability may be due to the fact that the gradient of soil types is much more restricted in Manitoba and not as closely correlated with climatic conditions. In both provinces, culture practices were less important as correlates of the weed community composition than soil type or, to a certain extent, the previous crop. Key words: canonical correspondence analysis, cereal crops, oil seed crops.


2016 ◽  
Vol 30 (3) ◽  
pp. 229-238 ◽  
Author(s):  
John Walker Recha ◽  
Bancy M. Mati ◽  
Mary Nyasimi ◽  
Philip K. Kimeli ◽  
James M. Kinyangi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document