Herbage mass thresholds rather than plant phenology are a more useful cue for grazing management decisions in the mid-north region of South Australia

2010 ◽  
Vol 32 (4) ◽  
pp. 379 ◽  
Author(s):  
Lewis P. Kahn ◽  
Judi M. Earl ◽  
Millie Nicholls

Research was conducted in the mid-north of South Australia over the period 2000–05 to evaluate the effects of different grazing management cues on composition and production of a grassland. The management cues were based on calendar, plant phenology or herbage mass thresholds using grazing exclusion as a control. There were five grazing treatments: (i) regional practice (RP), where sheep grazed continuously for the period April–December; (ii) autumn rest, where sheep grazing was restricted to June–December; (iii) spring rest, where sheep grazing was restricted to April–August; (iv) high density and short duration (HDSD), where herbage mass thresholds determined when grazing occurred and for what duration; and (v) nil (NIL) grazing by domestic herbivores. Mean annual estimates of herbage mass were highest for NIL and HDSD and inclusion of the estimate of herbage consumption by sheep resulted in greatest primary plant production in HDSD. The contribution of perennial grasses to herbage mass declined with RP and seasonal grazing treatments. Frequency of perennial grasses was unaffected by grazing treatment but the number of perennial grass plants increased over time in RP and seasonal treatments. HDSD allowed maintenance of basal cover whereas bare ground increased with RP and seasonal treatments. Litter accumulated in NIL but this was associated with a decline in perennial basal cover. Seasonal grazing treatments did not provide an advantage over RP and there appeared to be no benefit from including phenology in management decisions. In contrast, HDSD resulted in a stable and productive grassland ecosystem, with stocking rate estimated at 78% greater than other treatments. These features offer a desirable mix for future industry adoption in the mid-north of South Australia.

2000 ◽  
Vol 40 (2) ◽  
pp. 125 ◽  
Author(s):  
D. R. Kemp ◽  
P. M. Dowling

Naturalised pastures across the higher rainfall (>600 mm) perennial pasture zone of south-eastern Australia are less productive than they were, while sown pastures fail to maintain their initial levels of production. Several factors have contributed to this, including lack of knowledge of suitable grazing practices, weed invasion, increasing acid soils, rising water tables and poor management practices during droughts. A key issue in each case is the decline in perennial grass species which is both a cause and effect of the decline in productivity and sustainability of these ecosystems. This paper introduces a volume devoted to the largest collaborative study done to evaluate tactics for better grazing management and to improve the sustainability of perennial pasture ecosystems. Grazing practices to manage the composition of pastures have been largely neglected in pasture research, but are an important first step in improving pasture sustainability. This paper also outlines a new, open communal grazing experimental design which was developed and used across 24 sites on farms in New South Wales, Victoria, Tasmania and South Australia, to evaluate tactics for grazing management. The general aim across these experiments was to maintain (if adequate) or enhance (if degraded), the proportion of desirable perennial grasses in the sward to achieve more sustainable pastures. The results will provide the basis for building more sustainable grazing systems.


2016 ◽  
Vol 16 ◽  
pp. 275-279
Author(s):  
E.J. Hall ◽  
R. Reid ◽  
B. Clark ◽  
R. Dent

In response to the need to find better adapted and more persistent perennial pasture plants for the dryland pastures in the cool-temperate low to medium rainfall (500-700 mm) regions, over 1000 accessions representing 24 species of perennial legumes and 64 species of perennial grasses, were introduced, characterised and evaluated for production and persistence under sheep grazing at sites throughout Tasmania. The work has identified four alternative legume species in Talish Clover (Trifolium tumens). Caucasian Clover (T. ambiguum), Stoloniferous Red Clover (T. pratense var. stoloniferum), Lucerne x Yellow Lucerne Hybrid (Medicago sativa x M.sativa subsp. falcata); and two grass species in Coloured Brome (Bromus coloratus) and Hispanic Cocksfoot (Dactylis glomerata var hispanica). Keywords: persistence, perennial grass, perennial legume


2002 ◽  
Vol 42 (4) ◽  
pp. 431 ◽  
Author(s):  
G. M. Lodge

A split-plot experiment was sown at Tamworth in 1992 to examine the effects of continuous sheep grazing and seasonal closures (autumn, spring, spring + autumn, and summer + winter) on the herbage mass, plant frequency and basal cover of 5 perennial grasses, when sown as monocultures or with a perennial (Trifolium repens cv. Haifa) or annual legume (Trifolium subterraneum var. subterraneum cv. Seaton Park). Plant basal area and crown density data were also collected. The perennial grasses were Phalaris aquatica cv. Sirosa, Festuca arundinacea, cv.� Demeter, Lolium perenne cv. Kangaroo Valley, Austrodanthonia richardsonii (syn. Danthonia richardsonii) cv.�Taranna, and A. bipartita (syn. D. linkii) cv. Bunderra. There was no significant effect of legume presence on the herbage mass or persistence of the perennial grasses. The only treatment that had a significant effect (P< 0.05) on either herbage mass, plant frequency or basal cover data was the grazing treatment × perennial grass interaction in each of the years 1993-98, except for herbage mass in December 1993 and basal cover in October 1998. In all of the grazing treatments examined, Kangaroo Valley ryegrass failed to persist after spring 1994; Demeter fescue had failed by spring 1997 and Sirosa phalaris by spring 1998. Six years after sowing the only temperate grass cultivars that were persisting in all grazing treatments were the native perennials, Taranna and Bunderra. Hence, the data represent the entire stand life from sowing to eventual failure for the 3 introduced cultivars. While grazing treatment effects within years for individual species were significant, overall grazing had little effect on the rate of decline in herbage mass and persistence of Kangaroo Valley, Demeter and Sirosa. By 1998, grazing treatment had no significant effect on the herbage mass and basal cover of Taranna and Bunderra, but their plant frequencies were lowest in the spring rest and summer + winter rest treatments.


2000 ◽  
Vol 40 (2) ◽  
pp. 299 ◽  
Author(s):  
J. M. Virgona ◽  
A. Bowcher

The response to variation in grazing interval over the spring–autumn period in southern New South Wales was examined on 4 perennial grass species over 2 years. Plots of phalaris (Phalaris aquatica L. cv. Sirolan), cocksfoot (Dactylis glomerata L. cv. Porto), tall fescue (Festuca arundinacea Shreb cv. Demeter) and a native danthonia (Danthonia richardsonii cv. Taranna), were grazed by sheep every 2, 5 or 8 weeks, either rainfed or given supplementary irrigation. Basal cover was monitored over this period and is combined with measurements of phenological development and herbage mass to explain differences in persistence. The seasons differed with respect to rainfall, 1994–95 being dry compared to 1995–96. Over the 1994–95 season, the relative change in basal cover [RCBC, the ratio of final (May 1995) to initial (September 1994) basal cover] of the 3 introduced perennial grasses was significantly less than 1, which indicated a decline in basal cover over the measurement period. In contrast, RCBC was 1.55 for danthonia. Grazing interval treatments significantly affected RCBC in 1994–95, RCBC increasing with grazing interval. In the 8-week grazing interval, RCBC did not significantly differ from 1. Changes in density were also measured in 1994–95 and followed a similar pattern to RCBC for species effects although there was no significant effect of grazing interval. In 1995–96, there were interactions between watering and both species and grazing interval. The RCBC (September 1995–May 1996) was significantly greater than 1 for cocksfoot and tall fescue under irrigated conditions but not under rainfed conditions. The response to grazing interval depended on water supply. The 5-week grazing interval led to the highest RCBC under both rainfed and irrigated conditions. However, when rainfed, the 5- and 8-week treatments were not significantly different, whereas under irrigation, the 2- and 5-week treatments did not significantly differ. For the 1995–96 season, a movement index (MI, ratio of newly colonised area to that occupied throughout the season) was measured. There was a strong interaction between species and watering but phalaris was the most mobile (highest MI) of the 4 species under both rainfed and irrigated conditions. The absence of any interaction between species and grazing interval in either 1994–95 or 1995–96 suggests that response to grazing of these species may be similar despite differences in survival mechanisms.


2000 ◽  
Vol 40 (2) ◽  
pp. 121 ◽  
Author(s):  
W. K. Mason ◽  
G. Kay

This special edition of the Australian Journal of Experimental Agriculture presents papers from work undertaken as part of the Temperate Pasture Sustainability Key Program (TPSKP; see Fig. 1), and presented at a workshop in Sydney in November 1997. TPSKP was initiated by Meat and Livestock Australia (MLA). The Land and Water Resources Research and Development Corporation, the International Wool Secretariat and the Murray Darling Basin Commission were joint funders of some of the individual projects. Most projects were carried out on private properties, and many had producer groups associated with the sites to provide input into treatment selections as well as management guidance and support. This substantial producer input was provided free to the program. The success of TPSKP relied heavily on physical and financial support from State departments of agriculture and conservation, CSIRO and universities, and also on the enthusiasm of these groups to work collaboratively across the 4 south-eastern states. One of the key results of this cooperation was the development of a set of experimental protocols so that measurements taken anywhere in TPSKP could be directly compared. TPSKP aimed to develop the principles for manipulating pasture composition to make grazing systems more productive and sustainable. The program priorities were to: (i) determine by survey the attitudes of producers to grazing management and identify the characteristics of those producers most likely to adopt the program results; (ii) demonstrate by June 1996 that potentially responsive perennial grass-based pastures could be upgraded using grazing management to become a ‘desirable’ pasture for animal production and sustainability; (iii) demonstrate by June 1996 that newly sown perennial grass-based pastures could be maintained in a desirable condition using grazing management; (iv) determine the critical factors responsible for the capacity of perennial grasses to persist, respond to drought, and ameliorate land degradation; (v) develop producers’ skills in pasture species identification, pasture and animal assessment, and feed budgeting, both to enhance their existing management, and to ‘prime’ them for the outputs from TPSKP; (vi) to demonstrate (in phase 2) that improvements in pasture composition and grazing management can have both economic and environmental benefits.


1981 ◽  
Vol 29 (5) ◽  
pp. 533 ◽  
Author(s):  
DM Orr

Seasonal changes in the quantitative floristics at a wide range of Astrebla grassland sites in south-western Queensland were monitored between 1972 and 1980 with a wheel point apparatus. Changes in the floristics were measured in terms of both relative abundance and basal cover. A large increase in the relative abundance of perennial grasses, particularly Aristida latifolia, Astrebla spp. and Dichanthium sericeum, occurred between 1972 and 1976. This increase was at the expense of annual grasses and forbs which declined in both relative abundance and number of genera present. The relative abundance of perennial grasses declined between 1978 and 1980 and this was associated with a large increase in the forbs such as Daucus glochidiatus and Plantago spp., particularly at southern sites. The contribution of annual grasses to botanical composition remained low throughout the period. Total basal cover differed between years although these differences were not significant. As perennial grass, particularly Astrebla spp., was the major vegetation component of total basal cover, changes in the latter were associated mainly with changes in the basal cover of Astrebla spp. Changes in the contribution of individual species to total basal cover were related to changes in the relative abundance of those species. Changes in botanical composition in Astrebla grassland may be influenced more by trends in seasonal rainfall than by grazing pressure.


2011 ◽  
Vol 33 (1) ◽  
pp. 67 ◽  
Author(s):  
Y. Alemseged ◽  
R. B. Hacker ◽  
W. J. Smith ◽  
G. J. Melville

Thickening of native shrubs is a major problem in many ‘semi-arid woodlands’ as significant increase in shrub density is often negatively correlated with herbaceous vegetation and leads to reduced pasture production and soil erosion. This project aimed to test the hypothesis that temporary cropping (up to three crops in 15 years) consistently increases the density of native perennial grasses following the removal of shrubs. A total of 30 paddocks that had been cropped during the last 20 years were randomly selected using a satellite-based database that documented annual clearing and cropping history from 1987 to 2003. Paddocks were classified into four types based on clearing and cropping history and grazing management – not cleared (shrubs), regrowth (re-invaded by shrubs), set stocked (cropped and grazed), light/rotationally grazed (cropped and grazed). The responses of vegetation and soil (chemical and physical) properties to clearing and cropping were evaluated. Results indicated that ground cover, native perennial grass cover and standing dry matter were highest under light/rotationally grazed conditions. The shrub state represents a stable state within the Cobar pediplain brought about due to land-use change in the form of overgrazing and/or the removal of fire from the system. An alternative stable state was achieved as a result of disturbance in the form of clearing, cropping and grazing management thereby directly altering the shrub population. The resilience of this state is largely dependent on the grazing management system used and on the prevention of shrub from re-establishing while failure to control shrubs could lead to the re-emergence of the Shrub State. We conclude that native grasslands do regenerate following cropping after removal of shrubs. The importance of grazing management for restoring perennial ground cover following removal of shrubs and temporary cropping has been clearly demonstrated by the study.


2005 ◽  
Vol 45 (4) ◽  
pp. 369 ◽  
Author(s):  
P. M. Dowling ◽  
D. R. Kemp ◽  
P. D. Ball ◽  
C. M. Langford ◽  
D. L. Michalk ◽  
...  

Declining grassland productivity is a major concern in southern temperate Australia. Continuous grazing is thought to be a primary contributor to this decline, which is associated with the loss of perennial grasses. Landholders are evaluating grazing management strategies that might curb the loss of perennials and increase long-term productivity. This study reports on a comparison between continuous grazing and time-control grazing with sheep and cattle using a paired-paddock design at 5 locations in south-eastern Australia (lat. 30–42°S) over 6 years (1994–99). Pasture herbage mass, grassland species composition and basal cover of perennial grasses were assessed at 6-monthly intervals. Species abundance data were analysed by ANOVA, ordination (multi-dimensional scaling) and splining procedures to assess comparative trends between the 2 management treatments at each site. Species were categorised into major functional groups for analysis. Over all 5 sites there were few consistent differences between management treatments (continuous grazing v. time-control grazing). Basal cover was greater on the time-control grazing management compared with continuous grazing for most of the experimental period at 3 sites, but the initial values were also greater, resulting in a non-significant management × time interaction. Based on this study, we conclude that there was no apparent medium-term benefit of a multi-paddock rotational (time-control grazing) grazing system over continuous grazing for encouraging and maintaining a favourable botanical composition. The benefits for land managers from employing systems such as time-control grazing may accrue through other mechanisms. The study also highlights some of the difficulties with conducting on-farm paired-paddock research.


1965 ◽  
Vol 5 (18) ◽  
pp. 203 ◽  
Author(s):  
PS Cocks

The use of diquat dibromide permitted the successful sod seeding of perennial grasses. Rates of 2 1/2 and 5 oz an acre of diquat dibromide ion controlled weed competition. Time of seeding affected the response to spraying. Spraying without sod seeding controlled capeweed (Cryptostemma calendula Druce) in the first year, but in the following year there was a re-entry of the weed. This re-entry was reduced and almost eliminated by sod seeding with a perennial grass.


2020 ◽  
Vol 203 ◽  
pp. 104678
Author(s):  
Lucas Aquino Alves ◽  
Luiz Gustavo de Oliveira Denardin ◽  
Amanda Posselt Martins ◽  
Cimélio Bayer ◽  
Murilo Gomes Veloso ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document