Response of leaf traits of common plants in alpine meadow to plateau pika disturbance

2018 ◽  
Vol 40 (1) ◽  
pp. 39 ◽  
Author(s):  
Xiao Pan Pang ◽  
Zheng Gang Guo

Leaf traits have been proven to reflect the adaptation of individual plants to disturbance environments in a grassland ecosystem. A field survey was conducted to investigate the effects of the disturbance intensity of plateau pika on the leaf traits of a dominant (Kobresia pygmaea) and two common plants (Elymus nutans and Anemone rivularis var. flore-minore) in an alpine meadow. This study indicated that the plateau pika disturbance enables the individuals of three plants to exhibit respective plasticity because the three plants had different leaf indices (LI) as the disturbance intensity increased. K. pygmaea, E. nutans and A. rivularis var. flore-minore had high specific leaf area (SLA), leaf dry mass content (LDMC), and leaf nitrogen content (LNC) at relatively low, moderate, and high disturbance intensities of plateau pika, respectively. K. pygmaea, E. nutans and A. rivularis var. flore-minore suffered low nutrient stress at low, moderate and high disturbance intensities due to high N : P at corresponding disturbance intensities. These results indicated that K. pygmaea, E. nutans and A. rivularis var. flore-minore grew well at relatively low, moderate, and high disturbance intensity conditions, respectively, which contributed to the improvement of alpine meadows with a higher proportion of E. nutans at a moderate disturbance intensity or the deterioration of alpine meadows with a higher proportion of A. rivularis var. flore-minore at a high disturbance intensity. Our findings suggest that leaf traits are effective tools to explain how small burrowing herbivore disturbances often lead to the improvement or deterioration of alpine meadows under different disturbance intensities.

2010 ◽  
Vol 67 (6) ◽  
pp. 624-632 ◽  
Author(s):  
Keila Rego Mendes ◽  
Ricardo Antonio Marenco

Global climate models predict changes on the length of the dry season in the Amazon which may affect tree physiology. The aims of this work were to determine the effect of the rainfall regime and fraction of sky visible (FSV) at the forest understory on leaf traits and gas exchange of ten rainforest tree species in the Central Amazon, Brazil. We also examined the relationship between specific leaf area (SLA), leaf thickness (LT), and leaf nitrogen content on photosynthetic parameters. Data were collected in January (rainy season) and August (dry season) of 2008. A diurnal pattern was observed for light saturated photosynthesis (Amax) and stomatal conductance (g s), and irrespective of species, Amax was lower in the dry season. However, no effect of the rainfall regime was observed on g s nor on the photosynthetic capacity (Apot, measured at saturating [CO2]). Apot and leaf thickness increased with FSV, the converse was true for the FSV-SLA relationship. Also, a positive relationship was observed between Apot per unit leaf area and leaf nitrogen content, and between Apot per unit mass and SLA. Although the rainfall regime only slightly affects soil moisture, photosynthetic traits seem to be responsive to rainfall-related environmental factors, which eventually lead to an effect on Amax. Finally, we report that little variation in FSV seems to affect leaf physiology (Apot) and leaf anatomy (leaf thickness).


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1066
Author(s):  
Yanzheng Yang ◽  
Le Kang ◽  
Jun Zhao ◽  
Ning Qi ◽  
Ruonan Li ◽  
...  

A trait-based approach is an effective way to quantify plant adaptation strategies in response to changing environments. Single trait variations have been well depicted before; however, multi-trait covariations and their roles in shaping plant adaptation strategies along aridity gradients remain unclear. The purpose of this study was to reveal multi-trait covariation characteristics, their controls and their relevance to plant adaptation strategies. Using eight relevant plant functional traits and multivariate statistical approaches, we found the following: (1) the eight studied traits show evident covariation characteristics and could be grouped into four functional dimensions linked to plant strategies, namely energy balance, resource acquisition, resource investment and water use efficiency; (2) leaf area (LA) together with traits related to the leaf economic spectrum, including leaf nitrogen content per area (Narea), leaf nitrogen per mass (Nmass) and leaf dry mass per area (LMA), covaried along the aridity gradient (represented by the moisture index, MI) and dominated the trait–environmental change axis; (3) together, climate, soil and family can explain 50.4% of trait covariations; thus, vegetation succession along the aridity gradient cannot be neglected in trait covariations. Our findings provide novel perspectives toward a better understanding of plant adaptations to arid conditions and serve as a reference for vegetation restoration and management programs in arid regions.


Author(s):  
Zhihui Wang ◽  
Andrew K. Skidmore ◽  
Roshanak Darvishzadeh ◽  
Uta Heiden ◽  
Marco Heurich ◽  
...  

2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Eduardo Pradi Vendruscolo ◽  
Paulo Ricardo Oliveira ◽  
Luiz Fernandes Cardoso Campos ◽  
Alexsander Seleguini ◽  
Sebastião Ferreira de Lima

The objective of this study was to evaluate the effects on plant development, productivity and fruit quality from combinations of planting methods, nitrogen fertilizer applications and inoculation with Azospirillum brasilense in Cantaloupe melons cultivated in a protected environment. A randomized blocks design was adopted with a 2×2×2 factorial scheme with five replications. The treatments consisted of combinations of planting methods (pre-established seedlings or direct field sowing), inoculation with A. brasilense (with or without) and nitrogen fertilization (with and without). During the vegetative phase, the height, stem diameter, number and length of plant internodes and relative chlorophyll content were evaluated. Fifty-five days after planting, the leaf nitrogen content, leaf area and dry mass were measured. At harvest, the number of days between planting and harvesting was calculated, and the fresh weight, circumference, length, bark and pulp thickness and fruit productivity were evaluated. It was verified that A. brasilense did not affect any of the evaluated characteristics. On the other hand, direct field seed sowing decreased the production time and provided good plant development. However, the size and productivity of the fruits were higher when pre-established seedlings were used, with or without inoculation with A. brasilense, fertilized with nitrogen. It was concluded that the combinations of the different sowing methods, nitrogen fertilization and inoculation with A. brasilense affected the development and characteristics of the Cantaloupe melon plants and fruits.


2012 ◽  
Vol 26 (4) ◽  
pp. 849-856 ◽  
Author(s):  
Davi Rodrigo Rossatto ◽  
Rosana Marta Kolb

Gochnatia is very common in different phytophysiognomies in the Cerrado of São Paulo State, occupying open and closed areas. In this study, we compared the leaf anatomy and some ecophysiological traits of two species of Gochnatia, one a shrub (Gochnatia barrosii Cabrera) and the other a tree (Gochnatia polymorpha (Less.) Cabrera), which both occur in an area of "cerradão" at the Estação Ecológica de Assis, SP. We found qualitative structural differences between the species, with G. barrosii presenting amphistomatic leaves with a uniseriate epidermis and G. polymorpha showing hypostomatic leaves and a multiple epidermis or hypodermis on the adaxial surface. Moreover, the G. barrosii leaves had lower values in tissue thickness (with the exception of the epidermis on the abaxial surface) and leaf thickness in relation to G. polymorpha. There were differences in CO2 assimilation both in area and leaf dry mass basis, and differences in specific leaf area, which was higher in G. barrosii. Although the G. barrosii leaves were much less sclerophyllous than the G. polymorpha leaves, we found no differences in the efficiency of water use. The results suggest that plants from the same genus, but with distinct growth forms, differ in their leaf traits to deal with the environmental variations that they grow in.


2017 ◽  
Vol 39 (2) ◽  
pp. 133 ◽  
Author(s):  
Xiao Pan Pang ◽  
Zheng Gang Guo

Plateau pika (Ochotona curzoniae) is an endemic mammal in the Qinghai-Tibetan Plateau, and its activities create extensive disturbances on vegetation and soil of alpine meadow. Field surveys at two sites were conducted to determine the effects of plateau pika disturbances on important soil factors and plant biomass of vegetated land, and their relationships of the same alpine meadow type. Our study showed that plateau pika disturbances significantly increased soil organic carbon, soil total nitrogen, graminoid biomass and the number of plant species, and significantly decreased soil moisture and forb biomass, although they had no significant impacts on soil total phosphorus, soil total potassium and total biomass on vegetated land. Our study further showed that soil organic carbon, soil total nitrogen, graminoid biomass and the number of plant species were much higher at intermediate disturbance intensities than those at low and high disturbance intensities in the disturbed areas, and soil moisture showed a decreasing trend with the increase of disturbance intensity. Plateau pika disturbances altered the contribution of some important soil nutrients and moisture to plant biomass, and had different impact on the best models between plant biomass (total biomass, graminoid biomass and forb biomass) and predominant soil factors. Our results demonstrated that the optimal disturbance intensities of plateau pika were beneficial to alpine meadow. These results highlighted the influence of the presence of plateau pika and its disturbance intensity on key soil nutrients and plant productivity on vegetated land of the same alpine meadow type, which will help us better understand the role of plateau pika in the alpine meadow ecosystem.


2018 ◽  
Vol 50 ◽  
pp. 01038
Author(s):  
Ana Monteiro ◽  
Generosa Teixeira ◽  
Cristina Santos ◽  
Carlos M. Lopes

This study compare leaf morphoanatomical characteristics of four red cultivars - ‘Touriga Nacional’, ‘Trindadeira’, ‘Cabernet Sauvignon’ and ‘Syrah’ -, grown side by side at the same terroir. The analyzed leaf traits, under light and scanning electron microscopy, showed large variability among genotypes. ‘Trincadeira’ has the biggest single leaf area and ‘Cabernet Sauvignon’ the smallest one. ‘Touriga Nacional’ showed the lowest leaf dry weight and ‘Trincadeira’ the highest one, nonetheless there was no significantly differences in leaf dry mass per area and in leaf density. Leaf dry mass per area was positively correlated with leaf density but showed no correlation with leaf thickness. The French genotypes presented higher thickness of the leaf anatomical traits than the two Portuguese ones. ‘Trincadeira’ showed significantly highest stomata density while the other cultivars showed no significant differences among them. The analyses of the three types of stomata revealed that ‘Trincadeira’ has the lower percentage of raised above and the highest percentage of sunken stomata while ‘Cabernet Sauvignon’ showed the opposite behaviour. The hairs on the lower surface presented a similar woolly aspect in all cultivars. The possible role of leaf morphoanatomical characteristics in determining the cultivars adaptation to abiotic stresses is suggested and discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Teresa Navarro ◽  
Noelia Hidalgo-Triana

Structural and nutrient traits of a leaf are important for understanding plant ecological strategies (e.g., drought avoidance). We studied the specific leaf area (SLA), leaf carbon content (LCC), leaf nitrogen content (LNC), leaf phosphorous content (LPC), and the phenophase sequence index (PSI) in 126 Mediterranean perennial species from predesert (SMS) and semiarid (SaMS) to subalpine (SAS), alpine cushion (AcS), and oro-Mediterranean (AjS) shrublands, which represent eight functional groups (evergreen and deciduous trees, evergreen large and half shrubs, deciduous large and half shrubs, succulents and perennial herbs). We analyzed the variation and relationships between leaf traits and PSI among shrublands, functional groups, and within species with drought-avoidance mechanisms. SLA variation of 20–60% could be ascribed to differences between functional groups and only 38–48% to different shrublands increasing from the predesert to the alpine. Alpine species display low PSI and N:P and high SLA, LNC, LPC, LCC, and C:N. On the contrary, predesert and semiarid showed high PSI and low SLA. SLA mediates the vegetative and reproductive phenological plant sequencing, high SLA is often associated with the overlapping in growth and reproductive phenophases with a seasonal reduction of vegetative growth, whereas low SLA is associated with vegetative and reproductive sequencing and a seasonal extension of vegetative growth. Species with drought-avoidance mechanisms (e.g., semideciduous species) contribute to an increase in the mean values of the SLA and LNC because these species show similar leaf and phenological patterns as the deciduous (high SLA and LNC and low PSI). The N:P indicates that only the alpine shrublands could present P limitations. The positive correlations between SLA and LPC and LNC and LPC (leaf economic spectrum) and the negative correlation between SLA and C:N were consistently maintained in the studied arid Mediterranean shrublands.


Sign in / Sign up

Export Citation Format

Share Document