Effects of land-use change from grassland to forest on soil sulfur and arylsulfatase activity in New Zealand

Soil Research ◽  
2001 ◽  
Vol 39 (4) ◽  
pp. 749 ◽  
Author(s):  
C. R. Chen ◽  
L. M. Condron ◽  
M. R. Davis ◽  
R. R. Sherlock

The effects of land-use change from grassland to forest on soil sulfur (S) and arylsulfatase enzyme activity were investigated by comparing soils under unimproved grassland and an adjacent 19-year-old exotic forest stand (mixture of Pinus ponderosa and P. nigra). Results showed that concentrations of organic S in topsoil under forest were significantly lower [418 µg/g (0–5 cm), 398 µg/g (5–10 cm)] than corresponding soil depths under grassland [541 µg/g (0–5 cm), 468 µg/g (5–10 cm)]. On the other hand, inorganic S concentrations were significantly higher in soil under forest at all depths compared with grassland. The inorganic S concentration in soil under grassland increased with depth, but there was no significant difference observed at different depths under forest. The decrease in organic S [and organic carbon (C)] in soil under forest was due to the enhanced mineralisation of organic components. The accumulation of inorganic S in the soil profile under forest was mainly attributed to enhanced mineralisation, although decreased leaching, increased sulfate-S adsorption, and increased atmospheric inputs by canopy interception of aerosols could have contributed. Microbial biomass C and S and arylsulfatase activity were higher in topsoil under grassland than forest. Lower arylsulfatase activities under forest compared with grassland at the time of sampling suggest that mineralisation of organic S under forest was not currently mediated primarily by enzyme activity, although enzyme activity may have been important at earlier stages of forest development. Arylsulfatase activity was significantly correlated with soil organic C, water-soluble C, microbial biomass C, total S, organic S, and microbial biomass S in soil under grassland and forest. Significant concentrations of organic S and microbial biomass S were present in the forest floor (litter and fermentation layers). These pools would be important for S cycling and availability in forest ecosystems. S mineralisation, S fractions, microbial biomass S, microbial biomass C.

Geoderma ◽  
2009 ◽  
Vol 153 (1-2) ◽  
pp. 285-290 ◽  
Author(s):  
Xiao-Ling Wang ◽  
Yu Jia ◽  
Xiao-Gang Li ◽  
Rui-Jun Long ◽  
Qifu Ma ◽  
...  

1993 ◽  
Vol 73 (3) ◽  
pp. 341-347 ◽  
Author(s):  
V. V. S. R. Gupta ◽  
R. E. Farrell ◽  
J. J. Germida

In this study we investigated the occurrence of arylsulfatase activity in Saskatchewan soils and assessed the relationships between enzyme activity and soil properties. Thirty-nine soils representative of the five soil zones in Saskatchewan, and exhibiting a wide range of physical, chemical, and biological characteristics were studied. Arylsulfatase was detected in all the soils. Enzyme activity ranged from 14 to 770 μg ρ-nitrophenol released g−1 soil h−1. Arylsulfatase activity was highly correlated with levels of organic C (r = 0.73***), total S (r = 0.74***), HI-S (r = 0.60***), and microbial biomass C (MB-C; r = 0.56***). There was a relatively weak positive correlation (r = 0.48**) between arylsulfatase activity and the amount of SO4-S in the soils, indicating that end-product inhibition of the enzyme was not a factor at the low levels of SO4 commonly found in Saskatchewan soils. Key words: Sulfur, HI-reducible S, microbial biomass, organic C


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 306
Author(s):  
Vinicio Carrión-Paladines ◽  
Andreas Fries ◽  
Andrés Muñoz ◽  
Eddy Castillo ◽  
Roberto García-Ruiz ◽  
...  

This study evaluated the effects of land-use change (L-UCH) on dung beetle community structure (Scarabaeinae) in a disturbed dry ecosystem in southern Ecuador. Five different L-UCH classes were analyzed by capturing the dung beetle species at each site using 120 pitfall traps in total. To determine dung beetle abundance and diversity at each L-UCH, a general linear model (GLM) and a redundancy analysis (RDA) were applied, which correlated environmental and edaphic conditions to the community structure. Furthermore, changes in dung-producing vertebrate fauna were examined, which varied significantly between the different L-UCH classes due to the specific anthropogenic use or level of ecosystem disturbance. The results indicated that soil organic matter, pH, potassium, and phosphorus (RDA: component 1), as well as temperature and altitude (RDA: component 2) significantly affect the abundance of beetles (GLM: p value < 0.001), besides the food availability (dung). The highest abundance and diversity (Simpson’s index > 0.4, Shannon-Wiener index > 1.10) was found in highly disturbed sites, where soils were generally more compacted, but with a greater food supply due to the introduced farm animals. At highly disturbed sites, the species Canthon balteatus, Dichotomius problematicus, and Onthphagus confuses were found specifically, which makes them useful as bio-indicators for disturbed dry forest ecosystems in southern Ecuador.


Author(s):  
Elle M. Barnes ◽  
Steve Kutos ◽  
Nina Naghshineh ◽  
Marissa Mesko ◽  
Qing You ◽  
...  

CATENA ◽  
2019 ◽  
Vol 177 ◽  
pp. 180-188 ◽  
Author(s):  
Fabiane Pereira Machado Dias ◽  
Rodrigo Hübner ◽  
Flávia de Jesus Nunes ◽  
Wilson Mozena Leandro ◽  
Francisco Alisson da Silva Xavier

2004 ◽  
Vol 23 (2) ◽  
pp. 117-132 ◽  
Author(s):  
K. W. Oleson ◽  
G. B. Bonan ◽  
S. Levis ◽  
M. Vertenstein

Author(s):  
Kelsey Watts

Soils play a critical role to society as a medium that facilitates crop production and also contributes to the energy and carbon balance of the Earth System. Land-use change and improper land-use is one of the dominant factors affecting soil erosion and nutrient loss in soils. We examined the effects of land-use change on an Elmbrook clay/clay-loam soil on a farm in Ameliasburg on the northern part of Prince Edward County. Three cover types were examined: a sod field (established for over 10 years), a wheat field (part of a wheat/corn/soybean rotation for 30 years) and an undisturbed deciduous forest. Under each land-use type, cores to a depth of 40 cm were collected along three random 30 m transects (at 8, 16 and 24 m), then divided them into 10 cm increments, combining all similar depth increments along one transect. Soil quality was assessed by analyzing various soil physical and chemical properties. Bulk density of the soil was much higher (1.55 vs. 0.95 g/cm3) in both agricultural ecosystems compared to the forest, but only in the 0-10 cm layer. Soil moisture at 60% water holding capacity was much greater for the forest than the sod and wheat soils. Soil pH was slightly lower in the forest compared to the sod and wheat fields. The sod and wheat fields showed losses of ~52% and ~53% organic matter, respectively, in contrast to the forested area. The greatest differences in organic matter and total carbon were found in the top 10 cm, likely due to the greater accumulation of litter at the ground surface in the forest compared to the agricultural sites. It appears that long-term (10 year) agricultural production has led to a decline in some, but not all, soil quality measures, particularly soil organic matter, bulk density and water holding capacity. These findings are consistent with much of the literature concerning the effects of land-use change on soil quality, and highlight the need to develop improved management systems to minimize losses in soil quality that can lead to declines in the productivity potential of soils over time.


Sign in / Sign up

Export Citation Format

Share Document