total carbon
Recently Published Documents


TOTAL DOCUMENTS

2184
(FIVE YEARS 844)

H-INDEX

75
(FIVE YEARS 9)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaoqin Si ◽  
Rui Lu ◽  
Zhitong Zhao ◽  
Xiaofeng Yang ◽  
Feng Wang ◽  
...  

AbstractNatural gas is one of the foremost basic energy sources on earth. Although biological process appears as promising valorization routes to transfer biomass to sustainable methane, the recalcitrance of lignocellulosic biomass is the major limitation for the production of mixing gas to meet the natural gas composition of pipeline transportation. Here we develop a catalytic-drive approach to directly transfer solid biomass to bio-natural gas which can be suitable for the current infrastructure. A catalyst with Ni2Al3 alloy phase enables nearly complete conversion of various agricultural and forestry residues, the total carbon yield of gas products reaches up to 93% after several hours at relative low-temperature (300 degrees Celsius). And the catalyst shows powerful processing capability for the production of natural gas during thirty cycles. A low-carbon footprint is estimated by a preliminary life cycle assessment, especially for the low hydrogen pressure and non-fossil hydrogen, and technical economic analysis predicts that this process is an economically competitive production process.


2022 ◽  
Vol 8 ◽  
Author(s):  
Vanda Brotas ◽  
Glen A. Tarran ◽  
Vera Veloso ◽  
Robert J. W. Brewin ◽  
E. Malcolm S. Woodward ◽  
...  

Phytoplankton biomass, through its proxy, Chlorophyll a, has been assessed at synoptic temporal and spatial scales with satellite remote sensing (RS) for over two decades. Also, RS algorithms to monitor relative size classes abundance are widely used; however, differentiating functional types from RS, as well as the assessment of phytoplankton structure, in terms of carbon remains a challenge. Hence, the main motivation of this work it to discuss the links between size classes and phytoplankton groups, in order to foster the capability of assessing phytoplankton community structure and phytoplankton size fractionated carbon budgets. To accomplish our goal, we used data (on nutrients, photosynthetic pigments concentration and cell numbers per taxa) collected in surface samples along a transect on the Atlantic Ocean, during the 25th Atlantic Meridional Transect cruise (AMT25) between 50° N and 50° S, from nutrient-rich high latitudes to the oligotrophic gyres. We compared phytoplankton size classes from two methodological approaches: (i) using the concentration of diagnostic photosynthetic pigments, and assessing the abundance of the three size classes, micro-, nano-, and picoplankton, and (ii) identifying and enumerating phytoplankton taxa by microscopy or by flow cytometry, converting into carbon, and dividing the community into five size classes, according to their cell carbon content. The distribution of phytoplankton community in the different oceanographic regions is presented in terms of size classes, taxonomic groups and functional types, and discussed in relation to the environmental oceanographic conditions. The distribution of seven functional types along the transect showed the dominance of picoautotrophs in the Atlantic gyres and high biomass of diatoms and autotrophic dinoflagellates (ADinos) in higher northern and southern latitudes, where larger cells constituted the major component of the biomass. Total carbon ranged from 65 to 4 mg carbon m–3, at latitudes 45° S and 27° N, respectively. The pigment and cell carbon approaches gave good consistency for picoplankton and microplankton size classes, but nanoplankton size class was overestimated by the pigment-based approach. The limitation of enumerating methods to accurately resolve cells between 5 and 10 μm might be cause of this mismatch, and is highlighted as a knowledge gap. Finally, the three-component model of Brewin et al. was fitted to the Chlorophyll a (Chla) data and, for the first time, to the carbon data, to extract the biomass of three size classes of phytoplankton. The general pattern of the model fitted to the carbon data was in accordance with the fits to Chla data. The ratio of the parameter representing the asymptotic maximum biomass gave reasonable values for Carbon:Chla ratios, with an overall median of 112, but with higher values for picoplankton (170) than for combined pico-nanoplankton (36). The approach may be useful for inferring size-fractionated carbon from Earth Observation.


Author(s):  
Shihong Zeng ◽  
Gen Li ◽  
Shaomin Wu ◽  
Zhanfeng Dong

The Paris agreement is a unified arrangement for the global response to climate change and entered into force on 4 November 2016. Its long-term goal is to hold the global average temperature rise well below 2 °C. China is committed to achieving carbon neutrality by 2060 through various measures, one of which is green technology innovation (GTI). This paper aims to analyze the levels of GTI in 30 provinces in mainland China between 2001 and 2019. It uses the spatial econometric models and panel threshold models along with the slack based measure (SBM) and Global Malmquist-Luenberger (GML) index to analyze the spatial spillover and nonlinear effects of GTI on regional carbon emissions. The results show that GTI achieves growth every year, but the innovation efficiency was low. China’s total carbon dioxide emissions were increasing at a marginal rate, but the carbon emission intensity was declining year by year. Carbon emissions were spatially correlated and show significant positive agglomeration characteristics. The spatial spillover of GTI plays an important role in reducing carbon dioxide emissions. In the underdeveloped regions in China, this emission reduction effect was even more significant.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 138
Author(s):  
Tahmina Akter Urmi ◽  
Md. Mizanur Rahman ◽  
Md. Moshiul Islam ◽  
Md. Ariful Islam ◽  
Nilufar Akhtar Jahan ◽  
...  

Reliance on inorganic fertilizers with less or no use of organic fertilizers has impaired the productivity of soils worldwide. Therefore, the present study was conducted to quantify the effects of integrated nutrient management on rice yield, nutrient use efficiency, soil fertility, and carbon (C) sequestration in cultivated land. The experiment was designed with seven treatments comprising of a zero input control, recommended inorganic fertilizers (RD), poultry manure (PM) (5 t ha−1) + 50% RD, PM (2.5 t ha−1) + 75% RD, vermicompost (VC) (5 t ha−1) + 50% RD, VC (2.5 t ha−1) + 75% RD, and farmers’ practice (FP) with three replications that were laid out in a randomized complete block design. The highest grain yield (6.16–6.27 t ha−1) was attained when VC and PM were applied at the rate of 2.5 t ha−1 along with 75% RD. Uptake of nutrients and their subsequent use efficiencies appeared higher and satisfactory from the combined application of organic and inorganic fertilizers. The addition of organic fertilizer significantly influenced the organic carbon, total carbon, total nitrogen, ammonium nitrogen, nitrate nitrogen, soil pH, phosphorus, potassium, sulfur, calcium, and magnesium contents in post-harvest soil, which indicated enhancement of soil fertility. The maximum value of the organic carbon stock (18.70 t ha−1), total carbon stock (20.81 t ha−1), and organic carbon sequestration (1.75 t ha−1) was observed in poultry manure at the rate of 5 t ha−1 with 50% RD. The soil bulk density decreased slightly more than that of the control, which indicated the improvement of the physical properties of soil using organic manures. Therefore, regular nourishment of soil with organic and inorganic fertilizers might help rejuvenate the soils and ensure agricultural sustainability.


2022 ◽  
Vol 9 ◽  
Author(s):  
Mengyu Wang ◽  
Nan Lu ◽  
Nannan An ◽  
Bojie Fu

The relationship between biodiversity and ecosystem multifunctionality (EMF) is crucial for understanding the processes of ecological restoration in semi-arid regions. However, partitioning the relative influence of various biodiversity attributes, namely taxonomic, functional, and phylogenetic diversity, on EMF during secondary succession is still unclear. This study aimed to bridge the gap by employing field measurements and the chronosequence approach at 21 plots with different stand ages and precipitation conditions on the Loess Plateau of China. For diversity indices, we calculated the Shannon–Wiener diversity index, Simpson’s dominance index, Pielou evenness index, community weighted mean (CWM), functional variance (FDvar), and Faith’s phylogenetic diversity (PD) based on the empirically measured composition and traits of plant species. The EMF was expressed as the averaged value of eight function variables (including aboveground biomass, root biomass, soil total carbon, total nitrogen, and total phosphorus content, soil organic carbon, available nitrogen and available phosphorus content). The results showed that species evenness and CWM of leaf dry matter content (LDMC) significantly increased yet the CWM of specific leaf area (SLA) decreased with stand age, indicating the resource-use strategy of the plants became more conservative through succession into its later stages. The EMF increased with both stand age and mean annual precipitation. The structural equation model revealed that stand age, soil water content (SWC), and the multiple diversity indices altogether accounted for 56.0% of the variation in the EMF. PD and the CWMs of plant height and LDMC had positive effects on the EMF, and the FDvar of leaf nitrogen had negative effects on EMF. However, the Shannon Wiener diversity had no significant effect on the EMF. Our results suggest that functional and phylogenetic diversity are more important than taxonomic diversity in predicting EMF, and that multidimensional biodiversity indices should be jointly considered to better predict EMF during the succession of semiarid grasslands.


2022 ◽  
Vol 9 ◽  
Author(s):  
Wenyan Pan ◽  
Muhammad Awais Gulzar ◽  
Zongjun Wang ◽  
Chensi Guo

China will strive to achieve carbon peak by 2030 and carbon neutralization by 2060 cooperating with the system dominated by carbon intensity control and supplemented by total carbon emission control. This paper analyzes the environmental efficiency index of China; the empirical results show that the average growth rate is 4.5% from 2006 to 2017. A further decomposition of changes on scale efficiency and pure technical efficiency indicates that the pure technical efficiency maintains a long-term growth, and scale efficiency shows a fluctuant tendency. The abovementioned changes show that various methods in China such as industrial structure adjustment and promotion of the development of high and new technologies have obtained a certain effect. From the perspectives of regional differences, the average changes of environmental efficiency in eastern, central, and western regions as well as most of provinces and cities are all on the increase. On the space layout, a trend has been presented that the average changes in central regions exceed those in eastern regions, while the average changes in western regions are comparatively lower than those in eastern regions.


Author(s):  
Dung Tran Van ◽  
Thu Tat Anh ◽  
Long Vu Van ◽  
Da Chau Thi

This study investigated the influence of soil undergoing different crop rotations on the CH<sub>4</sub>, CO<sub>2</sub> emissions, and decomposition of rice straw. The studied soil undergoing crop rotation systems were rice-rice-rice (SR) and baby corn-rice-mungbean (SB). Two main microcosm set-ups: anaerobic (SR-AN, SB-AN) and aerobic (SR-AE, SB-AE) conditions. Litter bags containing rice stems were inserted into the soil and recollected at different time points for chemical analysing and the gas sampling was collected to measure the CO<sub>2</sub> and CH<sub>4</sub> emissions. The results indicated that the total carbon (TC) decreased around 30%, and the TC removal in anaerobic was significantly higher than in aerobic conditions. The residue cellulose content varied in a range from 68.2% to 78.6%, while the hemicellulose content varied from 57.4% to 69.3% at day 50 after incorporation. There were no significant differences in the total nitrogen removal, cellulose, hemicellulose, and lignin contents among the microcosm set-ups. CO<sub>2</sub> emission increased in all the microcosm set-ups with the treatments without rice straw (CTSR, CTSB) in both aerobic and anaerobic conditions. CH<sub>4</sub> release in the SR-AN treatments did not differ significantly compared with the SB-AN treatments. This study confirmed that the decomposition of rice straw residues is faster in the anaerobic paddy soil condition compared to the aerobic crop rotation condition.  


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 108
Author(s):  
Marilena Sanfilippo ◽  
Marco Albano ◽  
Antonio Manganaro ◽  
Gioele Capillo ◽  
Nunziacarla Spanò ◽  
...  

Transitional water environments represent very ecologically interesting areas, which provide various ecosystem services, both concerning biodiversity protection and sustainable fruition of resources. In this way, the evaluation of total carbon and its components, chlorophyll, and chemical and physical parameters is of fundamental importance to deepen the dynamics of these peculiar natural areas. Commercial interests linked to the biological resources of these areas are often not well exploited in relation to their sustainability, due to lack of knowledge. In this study, we investigated the distribution of total organic carbon, chlorophyll, and other related physical and chemical parameters in the natural Lagoon of Capo Peloro (Eastern Sicily), to deepen the knowledge on the carbon equilibrium of these transitional basins. Collected data showed different trends for all parameters, mainly related to different seasons and water exchanges with sea. The influences of primary production sources and farmed molluscs were not negligible and deserve to be further investigated in the future. The results obtained reveal good margins for the possibility of environmentally sustainable exploitation of natural resources in both basins, but at the same time, there is a need for a more detailed knowledge of anthropogenic impacts on the area.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12663
Author(s):  
Zhaocheng Wang ◽  
Mengyu Zhou ◽  
Hua Liu ◽  
Cheng Huang ◽  
Yuhua Ma ◽  
...  

Background Forest and plantation intercropping are efficient agroforestry systems that optimize land use and promote agroforestry around the world. However, diverse agroforestry systems on the same upper-plantation differently affect the physical and chemical properties of the soil. Methods The treatments for this study included a single cultivation (CK) pecan control and three agroforestry systems (pecan + Paeonia suffruticosa + Hemerocallis citrina, pecan + Paeonia suffruticosa, and pecan + Paeonia lactiflora). Soil samples were categorized according to the sampling depth (0–20 cm, 20–40 cm, 40–60 cm). Results The results demonstrated that the bulk density (BD) of soil under the pecan agroforestry system (PPH and PPL) was reduced by 16.13% and 7.10%, respectively, and the soil moisture content (MC) and total soil porosity (TPO) increased. Improvements in the physical properties of the soil under the PPS agroforestry system were not obvious when compared with the pecan monoculture. The soil total phosphorus (TP), total nitrogen (TN), available potassium (AK), and total carbon (TC) increased significantly, while the soil urease (S-UE), alkaline phosphatase (S-AKP), and 1,4-β-N-acetylglucosamines (S-NAG) enzyme activity also increased significantly, following agroforestry. Overall, the pecan agroforestry system significantly improved the physical properties of the pecan plantation soil, enriched the soil nutrients, and increased the activity of soil enzymes related to TC, TN, and TP cycles.


2022 ◽  
Vol 19 (1) ◽  
pp. 47-69
Author(s):  
Paula Maria Salgado-Hernanz ◽  
Aurore Regaudie-de-Gioux ◽  
David Antoine ◽  
Gotzon Basterretxea

Abstract. We estimated pelagic primary production (PP) in the coastal (<200 m depth) Mediterranean Sea from satellite-borne data, its contribution to basin-scale carbon fixation, its variability, and long-term trends during the period 2002–2016. Annual coastal PP was estimated at 0.041 Gt C, which approximately represents 12 % of total carbon fixation in the Mediterranean Sea. About 51 % of this production occurs in the eastern basin, whereas the western and Adriatic shelves contribute with ∼25 % each of total coastal production. Strong regional variability is revealed in coastal PP, from high-production areas (>300 g C m−2) associated with major river discharges to less productive provinces (<50 g C m−2) located in the southeastern Mediterranean. PP variability in the Mediterranean Sea is dominated by interannual variations, but a notable basin-scale decline (17 %) has been observed since 2012 concurring with a period of increasing sea surface temperatures in the Mediterranean Sea and positive North Atlantic Oscillation and Mediterranean Oscillation climate indices. Long-term trends in PP reveal slight declines in most coastal areas (−0.05 to −0.1 g C m−2 per decade) except in the Adriatic where PP increases at +0.1 g C m−2 per decade. Regionalization of coastal waters based on PP seasonal patterns reveals the importance of river effluents in determining PP in coastal waters that can regionally increase up to 5-fold. Our study provides insight into the contribution of coastal waters to basin-scale carbon balances in the Mediterranean Sea while highlighting the importance of the different temporal and spatial scales of variability.


Sign in / Sign up

Export Citation Format

Share Document