Synergistic interaction of an endo-β-1,4-glucanase and a β-glucohydrolase leads to more efficient hydrolysis of cellulose-like polymers in the gecarcinid land crab, Gecarcoidea natalis

2012 ◽  
Vol 60 (5) ◽  
pp. 299 ◽  
Author(s):  
Benjamin J. Allardyce ◽  
Stuart M. Linton

This study investigated synergism between endo-β-1,4-glucanase and β-glucohydrolase enzymes from Gecarcoidea natalis. Together, these enzymes efficiently hydrolyse the cellulose-like polymer, carboxymethyl cellulose, to glucose. Endo-β-1,4-glucanase and β-glucohydrolase, isolated previously from G. natalis, were incubated in vitro using a ratio of the measured activities that matches that found in their digestive juice (5.4 : 1). Their combined activity, measured as the release of glucose from carboxymethyl cellulose, was greater than the sum of their separate activities. Hence they synergistically released glucose from carboxymethyl cellulose (degree of synergy: 1.27). This may be due to the complementary nature of the products of endo-β-1,4-glucanase activity and the preferred substrates of the β-glucohydrolase. β-glucohydrolase may also enhance cellulose hydrolysis by removing cellobiose, a potential competitive inhibitor of endo-β-1,4-glucanase. The synergistic interaction of these two enzymes further supports the previous suggestion that this species possesses a novel two-enzyme cellulase system that differs from the traditional three-enzyme fungal model.

2011 ◽  
Vol 59 (6) ◽  
pp. 380 ◽  
Author(s):  
Benjamin J. Allardyce ◽  
Stuart M. Linton

This article reviews the current knowledge of cellulose and hemicellulose digestion by herbivorous land crabs using the gecarcinid Gecarcoidea natalis as a model species for this group. Cellulose digestion in the gecarcinids is hypothesised to require mechanical fragmentation and enzymatic hydrolysis. Mechanical fragmentation is achieved by the chelae, mandibles and gastric mill, which reduce the material to particles less than 53 µm. The gastric mill shows adaptations towards a plant diet; in particular, there are transverse ridges on the medial and lateral teeth and ventral cusps on the lateral teeth that complement and interlock to provide efficient cutting surfaces. Enzymatic hydrolysis of cellulose and hemicellulose is achieved through cellulase and hemicellulase enzymes. In the gecarcinids, 2–3 endo-β-1,4-glucanases, one β-glucohydrolase and a laminarinase have been identified. The endo-β-1,4-glucanases are multifunctional, with both endo-β-1,4-glucanase and lichenase activity. Complete cellulose hydrolysis is achieved through the synergistic action of the endo-β-1,4-glucanase and β-glucohydrolase. The evidence for the endogenous production of the cellulase and hemicellulase enzymes, their evolutionary origin and possible evolution in invertebrates as they colonised land is also discussed.


2002 ◽  
Vol 68 (1) ◽  
pp. 430-433 ◽  
Author(s):  
Susumu Ando ◽  
Hiroyasu Ishida ◽  
Yoshitsugu Kosugi ◽  
Kazuhiko Ishikawa

ABSTRACT An endoglucanase homolog from the hyperthermophilic archaeon Pyrococcus horikoshii was expressed in Escherichia coli, and its enzymatic characteristics were examined. The expressed protein was a hyperthermostable endoglucanase which hydrolyzes celluloses, including Avicel and carboxymethyl cellulose, as well as β-glucose oligomers. This enzyme is the first endoglucanase belonging to glycosidase family 5 found from Pyrococcus species and is also the first hyperthermostable endoglucanase to which celluloses are the best substrates. This enzyme is expected to be useful for industrial hydrolysis of cellulose at high temperatures, particularly in biopolishing of cotton products.


2021 ◽  
Vol 14 (2) ◽  
pp. 43
Author(s):  
Putra Oktavianto ◽  
Risdiyana Setiawan ◽  
Ilhami Ariyanti ◽  
Muhammad Fadhil Jamil

BIOETHANOL PRODUCTION FROM COCONUT HUSK USING the WET GAMMA IRRADIATION METHOD. The use of coconut husk has only been used as a material for making handicrafts such as ropes, brooms, mats, and others or just burned. The combustion of coconut husk can cause air pollution. In fact, coconut husk can be used as a raw material for bioethanol production so that the beneficial value of coconut husk will also increase. One way of bioethanol production from coconut husk is by irradiating the coconut husk. The coconut husk irradiation technique to be carried out in this study is the wet irradiation technique. Wet irradiation is carried out to accelerate the process of bioethanol production because at the time of irradiation, cellulose has been hydrolyzed and glucose has been formed so that it is more efficient in time and use of the material so that the cellulose hydrolysis process is not necessary. The coconut husk samples were wet because they were mixed with 4% NaOH and were irradiated using a gamma irradiator from STTN-BATAN Yogyakarta with a dose of 30 kGy and 50 kGy and 0 kGy (or without irradiation). Then the sample is fermented with the fungus Saccharomyces Cerevisiae from tape yeast to form ethanol. Ethanol is purified and then analyzed for concentrations using pycnometric and refractometric methods. The result is that the highest ethanol content is without irradiation (0 kGy), this is due to the low dosage used. However, the main point in this wet method research is evidence of hydrolysis of cellulose by the formation of gluoxane after irradiated wet coconut husk, and with Fehling A and B analysis, brown deposits are seen proving that glucose has been formed.


2018 ◽  
Vol 1145 ◽  
pp. 75-79 ◽  
Author(s):  
Hai Yun Ma ◽  
Zhi Ping Zhao ◽  
Peng Lu

The hydrolysis of cellulose into platform compounds and chemicals fuels has gained much attention to relieve the global energy crisis and environmental pollution. The filter paper (FP) cellulose with average degree of polymerization (DP) of 1000-1300 was dissolved in 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) firstly. And then acidic ionic liquids (ILs), ([(CH2)3SO3HVIm]HSO4) as the catalyst was applied to hydrolyze the FP cellulose by microwave heating. Compared with the oil bath heating method, microwave heating could effectively increase the total reducing sugars (TRS) yield about 10.7%. When the ratio of ILs catalyst to FP (w/w) was 0.167, and the ratio of deionized water to FP (w/w) was 0.833, the TRS yield was up to 60.8% within 20 min at 100°C.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph Mcgreg Duru ◽  
Oana Cristina Pârvulescu ◽  
Tănase Dobre ◽  
Cristian Eugen Răducanu

AbstractTwo Markov-type stochastic models were developed to describe the kinetics of acid hydrolysis of cellulose. One of them involved a Gauss (normal) distribution of probabilities of chemical bond breaking, the other a Weibull distribution. It was considered that the random breaking of cellulose was based on the cleavage of a parent macromolecule into two descendants. Model equations and kinetics of acid hydrolysis of cellulose consisting of 10 and 100 units of cellobiose were presented. The effects of acid concentration and temperature on the kinetics of hydrolysis process were taken into account. The results obtained applying both stochastic models were in a reasonable agreement with those obtained using a deterministic kinetic model. These stochastic models can accurately describe the kinetics of acid hydrolysis and cover the drawbacks of some deterministic kinetic models, e.g., large number of model equations and parameters, modification of parameter values by changing the process conditions.


2018 ◽  
pp. 1-9
Author(s):  
Mirjana Antov ◽  
Aleksandar Fistes

Sugar beet shreds were pretreated by hydrothermal procedure to investigate the effect of beta-glucosidase supplementation at different substrate loading on the rate of cellulose hydrolysis. Cellulose in the hydrothermally pretreated substrate was more efficiently hydrolyzed by enzymes than in untreated material, resulting in more than two times higher release of reducing sugars. In the investigated range of solids load, supplementation of fungal cellulases cocktail by beta-glucosidase increased production of reducing sugars from substrates, while 0.25 U/g was sufficient to achieve the highest effect under applied conditions.


1998 ◽  
Vol 64 (7) ◽  
pp. 2374-2379 ◽  
Author(s):  
Henrik Stålbrand ◽  
Shawn D. Mansfield ◽  
John N. Saddler ◽  
Douglas G. Kilburn ◽  
R. Antony J. Warren ◽  
...  

ABSTRACT Four β-1,4-glucanases (cellulases) of the cellulolytic bacteriumCellulomonas fimi were purified from Escherichia coli cells transformed with recombinant plasmids. Previous analyses using soluble substrates had suggested that CenA and CenC were endoglucanases while CbhA and CbhB resembled the exo-acting cellobiohydrolases produced by cellulolytic fungi. Analysis of molecular size distributions during cellulose hydrolysis by the individual enzymes confirmed these preliminary findings and provided further evidence that endoglucanase CenC has a more processive hydrolytic activity than CenA. The significant differences between the size distributions obtained during hydrolysis of bacterial microcrystalline cellulose and acid-swollen cellulose can be explained in terms of the accessibility of β-1,4-glucan chains to enzyme attack. Endoglucanases and cellobiohydrolases were much more easily distinguished when the acid-swollen substrate was used.


2012 ◽  
Vol 519 ◽  
pp. 100-103
Author(s):  
Lin Nan Zhang ◽  
Jin Long Wang ◽  
Bing Hui Xu ◽  
Patricia Flatt

Converting biomass into fuel is becoming increasingly important owing to the desirability of finding substitutes for fossil fuels and to the need to address the problem of global warming. Cellulose, one of the main constituents of biomass, is the most abundant bio-renewable material on the planet. Considerable effort has been devoted to the hydrolysis of cellulose in order to convert it into fuel. In this paper, both two-dimensional electrode electrochemical degradation of cellulose and the use of biological degradation of cellulose were investigated, which provides a detailed study of cellulose activity and stability in various ionic liquids. In the two-dimensional electrode reaction system, after 5 hours at the voltage of 8 V under the conditions of electrolysis, the degradation of cellulose reached 43.7%, BOD5/COD also significantly improved with biological treatment to the combination of electrochemical techniques. As the result, HEMA is a promising, novel, green medium for performing cellulose hydrolysis reactions to convert biomass into bio-fuels.


2020 ◽  
Author(s):  
Ce Dong ◽  
Jie Qiao ◽  
Xinping Wang ◽  
Wenli Sun ◽  
Lixia Chen ◽  
...  

Abstract Backgrounds: Engineering yeast with cell surface immobilized cellulosome is a promising strategy for consolidated bioprocessing (CBP) to produce bioethanol from the conversion of cellulose. However, previous studies mostly focused on utilization of Saccharomyces cerevisiae , which was able to directly convert phosphoric acid-swollen cellulose (PASC) or microcrystalline cellulose (Avicel) but not carboxymethyl cellulose (CMC) to ethanol, with an average titer below 2 g/L. Results: Harnessing an ultra-high-affinity IM7/CL7 protein pair, here we describe a method to engineer Pichia pastoris with minicellulosome through in vitro assembly of various recombinant cellulases on the cell surface. For the first time, the yeast can efficiently convert CMC to bioethanol, achieving an impressive ethanol titer of 5.1 g/L. Further, the engineered yeasts were lyophilized to powders that can be utilized as compound cellulases. Conclusions: This research promotes the application of P. pastoris as CBP cell factory in cellulosic ethanol production and provides a promising platform for screening optimal cellulase species and ratios to construct celluosome on the yeast cell surface.


Sign in / Sign up

Export Citation Format

Share Document