scholarly journals Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin

2015 ◽  
Vol 112 (46) ◽  
pp. 14191-14196 ◽  
Author(s):  
Johannes Feldmann ◽  
Anders Levermann

The future evolution of the Antarctic Ice Sheet represents the largest uncertainty in sea-level projections of this and upcoming centuries. Recently, satellite observations and high-resolution simulations have suggested the initiation of an ice-sheet instability in the Amundsen Sea sector of West Antarctica, caused by the last decades’ enhanced basal ice-shelf melting. Whether this localized destabilization will yield a full discharge of marine ice from West Antarctica, associated with a global sea-level rise of more than 3 m, or whether the ice loss is limited by ice dynamics and topographic features, is unclear. Here we show that in the Parallel Ice Sheet Model, a local destabilization causes a complete disintegration of the marine ice in West Antarctica. In our simulations, at 5-km horizontal resolution, the region disequilibrates after 60 y of currently observed melt rates. Thereafter, the marine ice-sheet instability fully unfolds and is not halted by topographic features. In fact, the ice loss in Amundsen Sea sector shifts the catchment's ice divide toward the Filchner–Ronne and Ross ice shelves, which initiates grounding-line retreat there. Our simulations suggest that if a destabilization of Amundsen Sea sector has indeed been initiated, Antarctica will irrevocably contribute at least 3 m to global sea-level rise during the coming centuries to millennia.

2013 ◽  
Vol 38 (1) ◽  
pp. 19-54 ◽  
Author(s):  
Vena W. Chu

Understanding Greenland ice sheet (GrIS) hydrology is essential for evaluating response of ice dynamics to a warming climate and future contributions to global sea level rise. Recently observed increases in temperature and melt extent over the GrIS have prompted numerous remote sensing, modeling, and field studies gauging the response of the ice sheet and outlet glaciers to increasing meltwater input, providing a quickly growing body of literature describing seasonal and annual development of the GrIS hydrologic system. This system is characterized by supraglacial streams and lakes that drain through moulins, providing an influx of meltwater into englacial and subglacial environments that increases basal sliding speeds of outlet glaciers in the short term. However, englacial and subglacial drainage systems may adjust to efficiently drain increased meltwater without significant changes to ice dynamics over seasonal and annual scales. Both proglacial rivers originating from land-terminating glaciers and subglacial conduits under marine-terminating glaciers represent direct meltwater outputs in the form of fjord sediment plumes, visible in remotely sensed imagery. This review provides the current state of knowledge on GrIS surface water hydrology, following ice sheet surface meltwater production and transport via supra-, en-, sub-, and proglacial processes to final meltwater export to the ocean. With continued efforts targeting both process-level and systems analysis of the hydrologic system, the larger picture of how future changes in Greenland hydrology will affect ice sheet glacier dynamics and ultimately global sea level rise can be advanced.


2015 ◽  
Vol 1 (8) ◽  
pp. e1500589 ◽  
Author(s):  
Ricarda Winkelmann ◽  
Anders Levermann ◽  
Andy Ridgwell ◽  
Ken Caldeira

The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.


2020 ◽  
Author(s):  
Andrew Shepherd ◽  

<p>In recent decades, the Antarctic and Greenland Ice Sheets have been major contributors to global sea-level rise and are expected to be so in the future. Although increases in glacier flow and surface melting have been driven by oceanic and atmospheric warming, the degree and trajectory of today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite records of changes in polar ice sheet volume, flow and gravitational potential to produce a reconciled estimate of their mass balance. <strong>Since the early 1990’s, ice losses from Antarctica and Greenland have caused global sea-levels to rise by 18.4 millimetres, on average, and there has been a sixfold increase in the volume of ice loss over time. Of this total, 41 % (7.6 millimetres) originates from Antarctica and 59 % (10.8 millimetres) is from Greenland. In this presentation, we compare our reconciled estimates of Antarctic and Greenland ice sheet mass change to IPCC projection of sea level rise to assess the model skill in predicting changes in ice dynamics and surface mass balance.  </strong>Cumulative ice losses from both ice sheets have been close to the IPCC’s predicted rates for their high-end climate warming scenario, which forecast an additional 170 millimetres of global sea-level rise by 2100 when compared to their central estimate.</p>


Author(s):  
Eric Rignot

The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1 m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 °C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.


2020 ◽  
Vol 11 (4) ◽  
pp. 953-976
Author(s):  
Jonas Van Breedam ◽  
Heiko Goelzer ◽  
Philippe Huybrechts

Abstract. The emphasis for informing policy makers on future sea-level rise has been on projections by the end of the 21st century. However, due to the long lifetime of atmospheric CO2, the thermal inertia of the climate system and the slow equilibration of the ice sheets, global sea level will continue to rise on a multi-millennial timescale even when anthropogenic CO2 emissions cease completely during the coming decades to centuries. Here we present global sea-level change projections due to the melting of land ice combined with steric sea effects during the next 10 000 years calculated in a fully interactive way with the Earth system model of intermediate complexity LOVECLIMv1.3. The greenhouse forcing is based on the Extended Concentration Pathways defined until 2300 CE with no carbon dioxide emissions thereafter, equivalent to a cumulative CO2 release of between 460 and 5300 GtC. We performed one additional experiment for the highest-forcing scenario with the inclusion of a methane emission feedback where methane is slowly released due to a strong increase in surface and oceanic temperatures. After 10 000 years, the sea-level change rate drops below 0.05 m per century and a semi-equilibrated state is reached. The Greenland ice sheet is found to nearly disappear for all forcing scenarios. The Antarctic ice sheet contributes only about 1.6 m to sea level for the lowest forcing scenario with a limited retreat of the grounding line in West Antarctica. For the higher-forcing scenarios, the marine basins of the East Antarctic Ice Sheet also become ice free, resulting in a sea-level rise of up to 27 m. The global mean sea-level change after 10 000 years ranges from 9.2 to more than 37 m. For the highest-forcing scenario, the model uncertainty does not exclude the complete melting of the Antarctic ice sheet during the next 10 000 years.


2018 ◽  
Author(s):  
Nicole-Jeanne Schlegel ◽  
Helene Seroussi ◽  
Michael P. Schodlok ◽  
Eric Y. Larour ◽  
Carmen Boening ◽  
...  

Abstract. Estimating the future evolution of the Antarctic Ice Sheet (AIS) is critical for improving future sea level rise (SLR) projections. Numerical ice sheet models are invaluable tools for bounding Antarctic vulnerability; yet, few continental scale projections of century-scale AIS SLR contribution exist, and those that do vary by up to an order of magnitude. This is partly because model projections of future sea level are inherently uncertain and depend largely on the model's boundary conditions and climate forcing. Here, we aim to improve the understanding of how such uncertainties affect ice sheet model simulations. With use of Monte-Carlo style uncertainty quantification techniques embedded within the Ice Sheet System Model (ISSM) framework, we assess how uncertainties in snow accumulation, ocean induced melting, ice viscosity, basal friction, bedrock elevation, and the presence of ice shelves, impact continental scale 100-year projections of AIS sea level contribution. Overall, we find that AIS sea level contribution is strongly affected by grounding line retreat, which is driven by the magnitude of ice shelf basal melt rates and by errors in bedrock topography. In addition, we find that over 1.2 meters of AIS global mean sea level contribution over the next century is achievable, but not likely, as it is tenable only in response to unrealistically large melt rates and instantaneous continental ice shelf collapse. Regionally, we find that under an endmember 100-year warming scenario generalized for the entire ice sheet, the Amundsen Sea Sector is the most significant source of model uncertainty (1032 mm 6σ spread). This region also has the largest potential for future sea level contribution (297 mm). In contrast, under a more plausible scenario informed regionally by literature and model sensitivity studies, the Ronne basin has a greater potential for local increases in ice shelf basal melt rates. As a result, under this more likely scenario where warm waters reach the continental shelf under the Ronne ice shelf, it is the Ronne basin, particularly the Evans and Rutford Ice Streams, that are the greatest contributors to potential SLR (161 mm) and to simulation uncertainty (420 mm 6σ spread).


2021 ◽  
Author(s):  
Michael E. Weber ◽  
Nicholas R. Golledge ◽  
Christopher J. Fogwill ◽  
Chris S.M. Turney ◽  
Zoë A. Thomas

<p>Emerging evidence suggests retreat of the Antarctic Ice Sheet (AIS) can persist considerably longer than the duration of the forcing. Unfortunately, the short observational record cannot resolve the tipping points, rate of change, and responses on century and longer timescales. New data from Iceberg Alley identifies eight retreat phases after the last Ice Age that de-stabilized the AIS within a decade, contributing to global sea-level rise for centuries to a millennium, which subsequently stabilized equally rapidly. New blue ice records and independent ice-sheet modeling demonstrate the dynamic response of the AIS included a step-wise retreat of up to 400 km across the Ross Sea, accompanied by ice elevation drawdown of the West Antarctic Ice Sheet (>600 m). Together, these long time series support studies that propose the recent acceleration of AIS mass loss may mark the beginning of a prolonged period of ice sheet retreat, associated with substantial global sea level rise.</p>


Author(s):  
D.J Wingham ◽  
A Shepherd ◽  
A Muir ◽  
G.J Marshall

The Antarctic contribution to sea-level rise has long been uncertain. While regional variability in ice dynamics has been revealed, a picture of mass changes throughout the continental ice sheet is lacking. Here, we use satellite radar altimetry to measure the elevation change of 72% of the grounded ice sheet during the period 1992–2003. Depending on the density of the snow giving rise to the observed elevation fluctuations, the ice sheet mass trend falls in the range −5–+85 Gt yr −1 . We find that data from climate model reanalyses are not able to characterise the contemporary snowfall fluctuation with useful accuracy and our best estimate of the overall mass trend—growth of 27±29 Gt yr −1 —is based on an assessment of the expected snowfall variability. Mass gains from accumulating snow, particularly on the Antarctic Peninsula and within East Antarctica, exceed the ice dynamic mass loss from West Antarctica. The result exacerbates the difficulty of explaining twentieth century sea-level rise.


2020 ◽  
Author(s):  
Jonas Van Breedam ◽  
Heiko Goelzer ◽  
Philippe Huybrechts

Abstract. The emphasis for informing policy makers on future sea-level rise has been on projections by the end of the 21st century. However, due to the long lifetime of atmospheric CO2, the thermal inertia of the climate system and the slow equilibration of the ice sheets, global sea level will continue to rise on a multi-millennial timescale even when anthropogenic CO2 emissions cease completely during the coming decades to centuries. Here we present global sea-level change projections due to melting of land ice combined with steric sea effects during the next 10 000 years calculated in a fully interactive way with the Earth System Model of Intermediate Complexity LOVECLIMv1.3. The climate forcing is based on the Extended Concentration Pathways defined until 2300 AD with no carbon dioxide emissions thereafter and the inclusion of a methane-emission feedback for the highest forcing scenario, equivalent to a cumulative CO2 release of around 460 to 5800 GtC. After 10 000 years, the sea-level change rate drops below 0.05 m per century and a semi-equilibrated state is reached. The Greenland ice sheet is found to nearly disappear for all forcing scenarios. The Antarctic ice sheet contributes only about 1.6 m to sea level for the lowest forcing scenario with a limited retreat of the grounding line in West Antarctica. For the higher forcing scenarios, the marine basins of the East Antarctic ice sheet also become ice free, resulting in a sea-level rise of up to 27 m. The global mean sea-level change after 10 000 years ranges from 9.2 m to more than 37 m. The projections of multi-millennial semi-equilibrated sea-level rise for a given CO2 forcing are shown to be in good agreement with geological archives.


Sign in / Sign up

Export Citation Format

Share Document