scholarly journals Molecular mechanism for cavitation in water under tension

2016 ◽  
Vol 113 (48) ◽  
pp. 13582-13587 ◽  
Author(s):  
Georg Menzl ◽  
Miguel A. Gonzalez ◽  
Philipp Geiger ◽  
Frédéric Caupin ◽  
José L. F. Abascal ◽  
...  

Despite its relevance in biology and engineering, the molecular mechanism driving cavitation in water remains unknown. Using computer simulations, we investigate the structure and dynamics of vapor bubbles emerging from metastable water at negative pressures. We find that in the early stages of cavitation, bubbles are irregularly shaped and become more spherical as they grow. Nevertheless, the free energy of bubble formation can be perfectly reproduced in the framework of classical nucleation theory (CNT) if the curvature dependence of the surface tension is taken into account. Comparison of the observed bubble dynamics to the predictions of the macroscopic Rayleigh–Plesset (RP) equation, augmented with thermal fluctuations, demonstrates that the growth of nanoscale bubbles is governed by viscous forces. Combining the dynamical prefactor determined from the RP equation with CNT based on the Kramers formalism yields an analytical expression for the cavitation rate that reproduces the simulation results very well over a wide range of pressures. Furthermore, our theoretical predictions are in excellent agreement with cavitation rates obtained from inclusion experiments. This suggests that homogeneous nucleation is observed in inclusions, whereas only heterogeneous nucleation on impurities or defects occurs in other experiments.

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 223
Author(s):  
Mark D. Tarn ◽  
Sebastien N. F. Sikora ◽  
Grace C. E. Porter ◽  
Jung-uk Shim ◽  
Benjamin J. Murray

The homogeneous freezing of water is important in the formation of ice in clouds, but there remains a great deal of variability in the representation of the homogeneous freezing of water in the literature. The development of new instrumentation, such as droplet microfluidic platforms, may help to constrain our understanding of the kinetics of homogeneous freezing via the analysis of monodisperse, size-selected water droplets in temporally and spatially controlled environments. Here, we evaluate droplet freezing data obtained using the Lab-on-a-Chip Nucleation by Immersed Particle Instrument (LOC-NIPI), in which droplets are generated and frozen in continuous flow. This high-throughput method was used to analyse over 16,000 water droplets (86 μm diameter) across three experimental runs, generating data with high precision and reproducibility that has largely been unrepresented in the microfluidic literature. Using this data, a new LOC-NIPI parameterisation of the volume nucleation rate coefficient (JV(T)) was determined in the temperature region of −35.1 to −36.9 °C, covering a greater JV(T) compared to most other microfluidic techniques thanks to the number of droplets analysed. Comparison to recent theory suggests inconsistencies in the theoretical representation, further implying that microfluidics could be used to inform on changes to parameterisations. By applying classical nucleation theory (CNT) to our JV(T) data, we have gone a step further than other microfluidic homogeneous freezing examples by calculating the stacking-disordered ice–supercooled water interfacial energy, estimated to be 22.5 ± 0.7 mJ m−2, again finding inconsistencies when compared to theoretical predictions. Further, we briefly review and compile all available microfluidic homogeneous freezing data in the literature, finding that the LOC-NIPI and other microfluidically generated data compare well with commonly used non-microfluidic datasets, but have generally been obtained with greater ease and with higher numbers of monodisperse droplets.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 670 ◽  
Author(s):  
Jürn W. P. Schmelzer ◽  
Alexander S. Abyzov ◽  
Vladimir G. Baidakov

Thermodynamic aspects of the theory of nucleation are commonly considered employing Gibbs’ theory of interfacial phenomena and its generalizations. Utilizing Gibbs’ theory, the bulk parameters of the critical clusters governing nucleation can be uniquely determined for any metastable state of the ambient phase. As a rule, they turn out in such treatment to be widely similar to the properties of the newly-evolving macroscopic phases. Consequently, the major tool to resolve problems concerning the accuracy of theoretical predictions of nucleation rates and related characteristics of the nucleation process consists of an approach with the introduction of the size or curvature dependence of the surface tension. In the description of crystallization, this quantity has been expressed frequently via changes of entropy (or enthalpy) in crystallization, i.e., via the latent heat of melting or crystallization. Such a correlation between the capillarity phenomena and entropy changes was originally advanced by Stefan considering condensation and evaporation. It is known in the application to crystal nucleation as the Skapski–Turnbull relation. This relation, by mentioned reasons more correctly denoted as the Stefan–Skapski–Turnbull rule, was expanded by some of us quite recently to the description of the surface tension not only for phase equilibrium at planar interfaces, but to the description of the surface tension of critical clusters and its size or curvature dependence. This dependence is frequently expressed by a relation derived by Tolman. As shown by us, the Tolman equation can be employed for the description of the surface tension not only for condensation and boiling in one-component systems caused by variations of pressure (analyzed by Gibbs and Tolman), but generally also for phase formation caused by variations of temperature. Beyond this particular application, it can be utilized for multi-component systems provided the composition of the ambient phase is kept constant and variations of either pressure or temperature do not result in variations of the composition of the critical clusters. The latter requirement is one of the basic assumptions of classical nucleation theory. For this reason, it is only natural to use it also for the specification of the size dependence of the surface tension. Our method, relying on the Stefan–Skapski–Turnbull rule, allows one to determine the dependence of the surface tension on pressure and temperature or, alternatively, the Tolman parameter in his equation. In the present paper, we expand this approach and compare it with alternative methods of the description of the size-dependence of the surface tension and, as far as it is possible to use the Tolman equation, of the specification of the Tolman parameter. Applying these ideas to condensation and boiling, we derive a relation for the curvature dependence of the surface tension covering the whole range of metastable initial states from the binodal curve to the spinodal curve.


2015 ◽  
Vol 15 (21) ◽  
pp. 31867-31889
Author(s):  
K.-T. O ◽  
R. Wood

Abstract. In this work, based on the well-known formulae of classical nucleation theory (CNT), the temperature TNc = 1 at which the mean number of critical embryos inside a droplet is unity is derived and proposed as a new approximation for homogeneous freezing temperature of water droplets. Without consideration of time dependence and stochastic nature of the ice nucleation process, the approximation TNc = 1 is able to reproduce the dependence of homogeneous freezing temperature on drop size and water activity of aqueous drops observed in a wide range of experimental studies. We use the TNc = 1 approximation to argue that the distribution of homogeneous freezing temperatures observed in the experiments may largely be explained by the spread in the size distribution of droplets used in the particular experiment. It thus appears that this approximation is useful for predicting homogeneous freezing temperatures of water droplets in the atmosphere.


Author(s):  
Xi Xi ◽  
Hong Liu ◽  
Chang Cai ◽  
Ming Jia ◽  
Weilong Zhang

Abstract The work attempts to analyze the performance of homogeneous nucleation by using the non-equilibrium thermodynamics theory and the classical nucleation theory. A nucleation rate graph was constructed under a wide range of operating temperature conditions. The results indicate that the superheat limit temperature (SLT) estimated by the modified homogeneous nucleation sub-model is in good agreement with the experimental results. The nucleation rate increases exponentially with the liquid temperature rise when the liquid temperature exceeds the SLT under atmospheric pressure. The superheated temperature needed to trigger the bubble nucleation decreases with the elevated ambient pressure.


2009 ◽  
Vol 9 (16) ◽  
pp. 5933-5948 ◽  
Author(s):  
D. Barahona ◽  
A. Nenes

Abstract. This study presents a comprehensive ice cloud formation parameterization that computes the ice crystal number, size distribution, and maximum supersaturation from precursor aerosol and ice nuclei. The parameterization provides an analytical solution of the cloud parcel model equations and accounts for the competition effects between homogeneous and heterogeneous freezing, and, between heterogeneous freezing in different modes. The diversity of heterogeneous nuclei is described through a nucleation spectrum function which is allowed to follow any form (i.e., derived from classical nucleation theory or from observations). The parameterization reproduces the predictions of a detailed numerical parcel model over a wide range of conditions, and several expressions for the nucleation spectrum. The average error in ice crystal number concentration was −2.0±8.5% for conditions of pure heterogeneous freezing, and, 4.7±21% when both homogeneous and heterogeneous freezing were active. The formulation presented is fast and free from requirements of numerical integration.


2021 ◽  
Author(s):  
Christopher B. Whitehead ◽  
Saim Özkar ◽  
Richard G. Finke

Are classical nucleation theory and the 1950 LaMer model of particle formation supported for a wide range of particle formations, or do competing models in the form of chemical reaction mechanisms have better experimental support? Read on to find out.


2009 ◽  
Vol 9 (3) ◽  
pp. 10957-11004 ◽  
Author(s):  
D. Barahona ◽  
A. Nenes

Abstract. This study presents a comprehensive ice cloud formation parameterization that computes the ice crystal number, size distribution, and maximum supersaturation from precursor aerosol and ice nuclei with any size distribution and chemical composition. The parameterization provides an analytical solution of the cloud parcel model equations and accounts for the competition effects between homogeneous and heterogeneous freezing, and, between heterogeneous freezing in different modes. The diversity of heterogeneous nuclei is described through a nucleation spectrum function which is allowed to follow any form (i.e., derived from classical nucleation theory or from empirical observations). The parameterization reproduced the predictions of a detailed numerical parcel model over a wide range of conditions, and several expressions for the nucleation spectrum. The average error in ice crystal number concentration was −2.0±8.5% for conditions of pure heterogeneous freezing, and, 4.7±21% when both homogeneous and heterogeneous freezing were active. Apart from its rigor, excellent performance and versatility, the formulation is extremely fast and free from requirements of numerical integration.


Author(s):  
F Bakhtar ◽  
J B Young ◽  
A J White ◽  
D A Simpson

The paper discusses the classical theory of the homogeneous nucleation of water droplets from supersaturated vapour and its application in predicting condensation in steam nozzles. The first part consists of a review of classical nucleation theory, focusing on the many modifications made to the original Becker-Döring theory and providing some new insights into recent developments. It is concluded that the predictive accuracy required for engineering calculations is not yet attainable with a theory derived from first principles. The areas that require most attention relate to the properties of small molecular clusters and the energy transfer processes in the non-isothermal theory. Experiments in converging-diverging nozzles provide the best means for validation at the very high nucleation rates of interest, but measurements of pressure distribution and the Sauter mean droplet radius are insufficient to provide independent checks on the separate theories of nucleation and droplet growth. Nevertheless, a judicious choice for the nucleation rate equation, in combination with a standard droplet growth model and a suitable equation of state for steam, can provide accurate predictions over a wide range of conditions. The exception is at very low pressures where there is evidence that the droplet growth rate in the nucleation zone is underestimated.


2015 ◽  
Vol 15 (8) ◽  
pp. 4077-4091 ◽  
Author(s):  
B. G. Pummer ◽  
C. Budke ◽  
S. Augustin-Bauditz ◽  
D. Niedermeier ◽  
L. Felgitsch ◽  
...  

Abstract. Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which serves as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We point out that also free macromolecules which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromolecules (INMs) is in the range of nanometers, corresponding to the size of the critical ice embryo. As the latter is temperature-dependent, we see a correlation between the size of INMs and the ice nucleation temperature as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biological species and comprise a variety of chemical structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-soluble INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theoretical calculations to develop a chemical interpretation of ice nucleation and water-soluble INMs. This has atmospheric implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atmospheric models.


Sign in / Sign up

Export Citation Format

Share Document