scholarly journals Prolactin alters blood pressure by modulating the activity of endothelial nitric oxide synthase

2016 ◽  
Vol 113 (44) ◽  
pp. 12538-12543 ◽  
Author(s):  
Albert S. Chang ◽  
Ruriko Grant ◽  
Hirofumi Tomita ◽  
Hyung-Suk Kim ◽  
Oliver Smithies ◽  
...  

Increased levels of a cleaved form of prolactin (molecular weight 16 kDa) have been associated with preeclampsia. To study the effects of prolactin on blood pressure (BP), we generated male mice with a single-copy transgene (Tg; inserted into the hypoxanthine-guanine phosphoribosyltransferase locus) that enables inducible hepatic production of prolactin and its cleavage product. The Tg is driven by the indole-3-carbinol (I3C)-inducible rat cytochrome P450 1A1 promoter. When the Tg mice were fed normal chow (NC), plasma prolactin concentrations were comparable to those in female WT mice in the last third of pregnancy, and BP was lower than in WT mice (∼95 mm Hg vs. ∼105 mm Hg). When the Tg mice were fed chow containing IC3, plasma prolactin concentrations increased threefold, BP increased to ∼130 mm Hg, and cardiac function became markedly impaired. IC3 chow did not affect the WT mice. Urinary excretion of nitrite/nitrate and the amount of Ser1177-phosphorylated endothelial nitric oxide (NO) synthase (eNOS) were significantly greater in the Tg mice fed NC than in WT mice, as they are during pregnancy. However, when I3C was fed, these indicators of NO production became significantly less in the Tg mice than in WT mice. The effects of increased plasma prolactin were abolished by a genetic absence of eNOS. Thus, a threefold increase in plasma prolactin is sufficient to increase BP significantly and to markedly impair cardiac function, with effects mediated by NO produced by eNOS. We suggest that pregnant women with abnormally high prolactin levels may need special attention.

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Maria Peleli ◽  
Christa Zollbrecht ◽  
Marcelo Montenegro ◽  
Michael Hezel ◽  
Eddie Weitzberg ◽  
...  

Xanthine oxidoreductase (XOR) is generally known as a source of superoxide production, but this enzyme has also been suggested to mediate NO production via reduction of inorganic nitrate (NO 3 - ) and nitrite(NO 2 - ). This pathway for NO generation is of particular importance during certain pathologies, whereas endothelial NO synthase (eNOS) is the primary source of vascular NO generation under normal physiological conditions. The exact interplay between the NOS and XOR-derived NO is not yet fully elucidated. The aim of the present study was to investigate if eNOS deficiency is partly compensated by XOR upregulation and sensitization of the NO 3 - - NO 2 - - NO pathway. NO 3 - and NO 2 - were similar between naïve eNOS KO and wildtype (wt) mice, but reduced upon chronic treatment with the non-selective NOS inhibitor L-NAME (wt: 25.0±5.2, eNOS KO: 39.2±6.4, L-NAME: 8.2±1.6 μ NO 3 - -, wt: 0.38±0.07, eNOS KO: 0.42±0.04, L-NAME: 0.12±0.02 μ NO 2 - ). XOR function was upregulated in eNOS KO compared with wt mice [(mRNA: wt 1±0.07, eNOS KO 1.38±0.17), (activity: wt 825±54, eNOS KO 1327±280 CLU/mg/min), (uric acid: wt 32.87±1.53, eNOS KO 43.23±3.54 μ)]. None of these markers of XOR activity was increased in nNOS KO and iNOS KO mice. Following acute dose of NO 3 - (10 mg/kg bw, i.p.), the increase of plasma NO 2 - was more pronounced in eNOS KO (+0.51±0.13 μ) compared with wt (+0.22±0.09 μ), and this augmented response in the eNOS KO was abolished by treatment with the highly selective XOR inhibitor febuxostat (FEB). Liver from eNOS KO had higher reducing capacity of NO 2 - to NO compared with wt, and this effect was attenuated by FEB (Δppb of NO: wt +8.7±4.2, eNOS KO +44.2±15.0, wt+FEB +22.2±9.6, eNOS KO+FEB +26.8±10.2). Treatment with FEB increased blood pressure in eNOS KO (ΔMAP:+10.2±5.6 mmHg), but had no effect in wt (ΔMAP:-0.6±3.3 mmHg). Supplementation with NO 3 - (10 mM, drinking water) reduced blood pressure in eNOS KO (ΔMAP: -6.3±2.2 mmHg), and this effect was abolished by FEB (ΔMAP: +1.1±1.9 mmHg). In conclusion, upregulated and altered XOR function in conditions with eNOS deficiency can facilitate the NO 3 - - NO 2 - - NO pathway and hence play a significant role in vascular NO homeostasis.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1679 ◽  
Author(s):  
David Khalaf ◽  
Marcus Krüger ◽  
Markus Wehland ◽  
Manfred Infanger ◽  
Daniela Grimm

Nitric oxide (NO) is a well-known vasodilator produced by the vascular endothelium via the enzyme endothelial nitric oxide synthase (eNOS). The inadequate production of NO has been linked to elevated blood pressure (BP) in both human and animal studies, and might be due to substrate inaccessibility. This review aimed to investigate whether oral administration of the amino acids l-arginine (Arg) and l-citrulline (Cit), which are potential substrates for eNOS, could effectively reduce BP by increasing NO production. Both Arg and Cit are effective at increasing plasma Arg. Cit is approximately twice as potent, which is most likely due to a lower first-pass metabolism. The current data suggest that oral Arg supplementation can lower BP by 5.39/2.66 mmHg, which is an effect that is comparable with diet changes and exercise implementation. The antihypertensive properties of Cit are more questionable, but are likely in the range of 4.1/2.08 to 7.54/3.77 mmHg. The exact mechanism by which Cit and Arg exert their effect is not fully understood, as normal plasma Arg concentration greatly exceeds the Michaelis constant (Km) of eNOS. Thus, elevated plasma Arg concentrations would not be expected to increase endogenous NO production significantly, but have nonetheless been observed in other studies. This phenomenon is known as the “l-arginine paradox”.


1996 ◽  
Vol 270 (1) ◽  
pp. R118-R124 ◽  
Author(s):  
R. K. Dubey ◽  
M. A. Boegehold ◽  
D. G. Gillespie ◽  
M. Rosselli

A decreased influence of nitric oxide (NO) in the peripheral vasculature is associated with the pathophysiology of established hypertension, and some studies suggest that increased blood pressure positively correlates with decreased NO production. If so, then the increased arterial pressure in one-kidney, one-clip (1K1C) hypertensive rats should be associated with decreased circulating levels of nitrite/nitrate (NO2/NO3; stable metabolites of NO) and guanosine 3',5'-cyclic monophosphate (cGMP; mediator of NO action). We measured serum NO2/NO3 and cGMP levels in early hypertensive 1K1C (2 wk after clipping) and shamoperated one-kidney (1K) normotensive rats, treated orally with or without the NO-synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 2 wk). Compared with those in 1K rats, NO2/NO3 and cGMP levels were increased in 1K1C hypertensive rats but not in 1K1C rats treated with L-NAME. NO2/NO3 and cGMP levels in L-NAME-treated 1K and 1K1C rats were similar. Compared with that in 1K rats, systolic blood pressure (SBP) was increased in 1K1C rats and in L-NAME-treated 1K and 1K1C rats. The SBP increase in L-NAME-treated 1K1C rats was more rapid than in untreated 1K1C rats. In early hypertension, increases in SBP positively correlated with increases in serum NO2/NO3 and cGMP. After 2 wk of hypertension, circulating NO2/NO3 levels gradually declined and reached prehypertension levels by the fifth week of hypertension. These results provide evidence for increased NO synthesis in early hypertensive 1K1C rats, and this increased NO could be a compensatory mechanism to slow the development of hypertension in these animals.


Author(s):  
Hadis Shakeri ◽  
Jente R.A. Boen ◽  
Sofie De Moudt ◽  
Jhana O. Hendrickx ◽  
Arthur J.A. Leloup ◽  
...  

Endothelial cells (ECs) secrete different paracrine signals that modulate the function of adjacent cells; two examples of these paracrine signals are nitric oxide (NO) and neuregulin-1 (NRG1), a cardioprotective growth factor. Currently, it is undetermined whether one paracrine factor can compensate for the loss of another. Herein, we hypothesized that NRG1 can compensate for endothelial NO synthase (eNOS) deficiency. Methods. We characterized eNOS null and wild type (WT) mice by cardiac ultrasound and histology and we determined circulating NRG1 levels. In a separate experiment, 8 groups of mice were divided into 4 groups of eNOS null mice and wild type (WT) mice; half of the mice received angiotensin II (Ang II) to induce a more severe phenotype. Mice were randomized to daily injections with NRG1 or vehicle for 28 days. Results. eNOS deficiency increased NRG1 plasma levels, indicating that ECs increase their NRG1 expression when NO production is deleted. eNOS deficiency also increased blood pressure, lowered heart rate, induced cardiac fibrosis, and affected diastolic function. In eNOS null mice, Ang II administration increased cardiac fibrosis, but also induced cardiac hypertrophy and renal fibrosis. NRG1 administration prevented the cardiac and renal hypertrophy and fibrosis caused by Ang II infusion and eNOS deficiency. Moreover, Nrg1 expression in the myocardium is shown to be regulated by miR-134. Conclusion. This study indicates that administration of endothelium-derived NRG1 can compensate for eNOS deficiency in the heart and kidneys.


1999 ◽  
Vol 77 (12) ◽  
pp. 950-957 ◽  
Author(s):  
Suresh C Tyagi ◽  
Lane M Smiley ◽  
Vibhas S Mujumdar

Homocyst(e)ine injured vascular endothelium and modulated endothelial-dependent vascular function. Endothelium plays an analogous role in both the vessel and the endocardium. Therefore, we hypothesized that homocyst(e)ine modulated endocardial endothelium (EE) dependent cardiac function. The ex vivo cardiac rings from normal male Wistar-Kyoto rats were prepared. The contractile responses of left and right ventricular rings were measured in an isometric myobath, using different concentrations of CaCl2. The response was higher in the left ventricle than right ventricle and was elevated in endocardium without endothelium. The half effective concentration (EC50) and maximum tension generated by homocyst(e)ine were 106 and 5-fold lower than endothelin (ET) and angiotensin II (AII), respectively. However, in endothelial-denuded endocardium, homocyst(e)ine response was significantly increased (p < 0.005, compared with intact endothelium) and equal to the response to ET and AII. To determine the physiological significance of ET, AII, homocyst(e)ine, and endothelial nitric oxide in EE function, cardiac rings were pretreated with AII (10-10 M) or ET (10-13 M) and then treated with homocyst(e)ine (10-8 M). Results suggested that at these concentrations AII, ET, or homocyst(e)ine alone had no effect on cardiac contraction. However, in the presence of 10-10 M AII or 10-13 M ET, the cardiac contraction to homocyst(e)ine (10-8 M) was significantly enhanced (p < 0.01, compared with without pretreatment) and further increased in the endocardium without endothelium. The pretreatment of cardiac ring with the inhibitor of nitric oxide, Nω-nitro-L-arginine methyl ester (L-NAME), increased contractile response to homocyst(e)ine. These results suggested that homocyst(e)ine impaired EE-dependent cardiac function and acted synergistically with AII and ET in enhancing the cardiac contraction.Key words: endocardial remodeling, homocyst(e)ine, contraction, endothelin, angiotensin, endothelial-derived relaxing factor (EDRF), Nω-nitro-L-arginine methyl ester (L-NAME), endothelial dysfunction, ex vivo cardiac function, heart failure.


2008 ◽  
Vol 294 (3) ◽  
pp. L582-L591 ◽  
Author(s):  
Neetu Sud ◽  
Stephen Wedgwood ◽  
Stephen M. Black

In this study, we explore the roles of the delta isoform of PKC (PKCδ) in the regulation of endothelial nitric oxide synthase (eNOS) activity in pulmonary arterial endothelial cells isolated from fetal lambs (FPAECs). Pharmacological inhibition of PKCδ with either rottlerin or with the peptide, δV1-1, acutely attenuated NO production, and this was associated with a decrease in phosphorylation of eNOS at Ser1177 (S1177). The chronic effects of PKCδ inhibition using either rottlerin or the overexpression of a dominant negative PKCδ mutant included the downregulation of eNOS gene expression that was manifested by a decrease in both eNOS promoter activity and protein expression after 24 h of treatment. We also found that PKCδ inhibition blunted Akt activation as observed by a reduction in phosphorylated Akt at position Ser473. Thus, we conclude that PKCδ is actively involved in the activation of Akt. To determine the effect of Akt on eNOS signaling, we overexpressed a dominant negative mutant of Akt and determined its effect of NO generation, eNOS expression, and phosphorylation of eNOS at S1177. Our results demonstrated that Akt inhibition was associated with decreased NO production that correlated with reduced phosphorylation of eNOS at S1177, and decreased eNOS promoter activity. We next evaluated the effect of endogenously produced NO on eNOS expression by incubating FPAECs with the eNOS inhibitor 2-ethyl-2-thiopseudourea (ETU). ETU significantly inhibited NO production, eNOS promoter activity, and eNOS protein levels. Together, our data indicate involvement of PKCδ-mediated Akt activation and NO generation in maintaining eNOS expression.


1996 ◽  
Vol 7 (12) ◽  
pp. 2694-2699
Author(s):  
M C Ortíz ◽  
L A Fortepiani ◽  
C Martínez ◽  
N M Atucha ◽  
J García-Estañ

Recent work indicates that nitric oxide (NO) plays an important role in the systemic and renal alterations of liver cirrhosis. This study used aminoguanidine (AG), a preferential inhibitor of inducible nitric oxide synthase (iNOS), to evaluate the role of this NOS isoform in the systemic and renal alterations of an experimental model of liver cirrhosis with ascites (carbon tetrachloride/ phenobarbital). Experiments have been performed in anesthetized cirrhotic rats and their respective control rats prepared for clearance studies. Administration of AG (10 to 100 mg/kg, iv) elevated dose-dependent mean arterial pressure (MAP, in mm Hg) in the cirrhotic rats from a basal level of 79.3 +/- 3.6 to 115.0 +/- 4.7, whereas in the control animals, MAP increased only with the highest dose of the inhibitor (from 121.8 +/- 3.6 to 133.3 +/- 1.4). In the cirrhotic group, AG also significantly increased sodium and water excretion, whereas these effects were very modest in the control group. Plasma concentration of nitrates+nitrites, measured as an index of NO production, were significantly increased in the cirrhotic animals in the basal period and decreased with AG to levels not significantly different from the control animals. Similar experiments performed with the nonspecific NOS inhibitor N omega-nitro-L-arginine (NNA) also demonstrated an increased pressor sensitivity of the cirrhotic rats, but the arterial hypotension was completely corrected. These results, in an experimental model of liver cirrhosis with ascites, show that AG exerts a beneficial effect as a result of inhibition of NO production, increasing blood pressure and improving the reduced excretory function. Because NNA, but not AG, completely normalized the arterial hypotension, it is suggested that the constitutive NOS isoform is also contributing in an important degree. It is concluded that the activation of both inducible and constitutive NOS isoforms plays an important role in the lower systemic blood pressure and associated abnormalities that characterize liver cirrhosis.


2000 ◽  
Vol 279 (4) ◽  
pp. F671-F678 ◽  
Author(s):  
Xiaohui Zhang ◽  
Hong Li ◽  
Haoli Jin ◽  
Zachary Ebin ◽  
Sergey Brodsky ◽  
...  

Hyperhomocysteinemia (HHCy) is an independent and graded cardiovascular risk factor. HHCy is prevalent in patients with chronic renal failure, contributing to the increased mortality rate. Controversy exists as to the effects of HHCy on nitric oxide (NO) production: it has been shown that HHCy both increases and suppresses it. We addressed this problem by using amperometric electrochemical NO detection with a porphyrinic microelectrode to study responses of endothelial cells incubated with homocysteine (Hcy) to the stimulation with bradykinin, calcium ionophore, or l-arginine. Twenty-four-hour preincubation with Hcy (10, 20, and 50 μM) resulted in a gradual decline in responsiveness of endothelial cells to the above stimuli. Hcy did not affect the expression of endothelial nitric oxide synthase (eNOS), but it stimulated formation of superoxide anions, as judged by fluorescence of dichlorofluorescein, and peroxynitrite, as detected by using immunoprecipitation and immunoblotting of proteins modified by tyrosine nitration. Hcy did not directly affect the ability of recombinant eNOS to generate NO, but oxidation of sulfhydryl groups in eNOS reduced its NO-generating activity. Addition of 5-methyltetrahydrofolate restored NO responses to all agonists tested but affected neither the expression of the enzyme nor formation of nitrotyrosine-modified proteins. In addition, a scavenger of peroxynitrite or a cell-permeant superoxide dismutase mimetic reversed the Hcy-induced suppression of NO production by endothelial cells. In conclusion, electrochemical detection of NO release from cultured endothelial cells demonstrated that concentrations of Hcy >20 μM produce a significant indirect suppression of eNOS activity without any discernible effects on its expression. Folates, superoxide ions, and peroxynitrite scavengers restore the NO-generating activity to eNOS, collectively suggesting that cellular redox state plays an important role in HCy-suppressed NO-generating function of this enzyme.


2004 ◽  
Vol 287 (2) ◽  
pp. F231-F235 ◽  
Author(s):  
Marcela Herrera ◽  
Jeffrey L. Garvin

Endothelin-1 (ET-1) acutely inhibits NaCl reabsorption by the thick ascending limb (THAL) by activating the ETB receptor, stimulating endothelial nitric oxide synthase (eNOS), and releasing nitric oxide (NO). In nonrenal tissue, chronic exposure to ET-1 stimulates eNOS expression via the ETB receptor and activation of phosphatidylinositol 3-kinase (PI3K). We hypothesized that ET-1 increases eNOS expression in the THAL by binding to ETB receptors and stimulating PI3K. In primary cultures of medullary THALs treated for 24 h, eNOS expression increased by 36 ± 18% with 0.01 nM ET-1, 123 ± 30% with 0.1 nM ( P < 0.05; n = 5), and 71 ± 30% with 1 nM, whereas 10 nM had no effect. BQ-788, a selective ETB receptor antagonist, completely blocked stimulation of eNOS expression caused by 0.1 nM ET-1 (12 ± 25 vs. 120 ± 40% for ET-1 alone; P < 0.05; n = 5). BQ-123, a selective ETA receptor antagonist, did not affect the increase in eNOS caused by 0.1 nM ET-1. Sarafotoxin c (S6c; 0.1 μM), a selective ETB receptor agonist, increased eNOS expression by 77 ± 30% ( P < 0.05; n = 6). Wortmannin (0.01 μM), a PI3K inhibitor, completely blocked the stimulatory effect of 0.1 μM S6c (77 ± 30 vs. −28 ± 9%; P < 0.05; n = 6). To test whether the increase in eNOS expression heightens activity, we measured NO release in response to simultaneous treatment with l-arginine, ionomycin, and clonidine using a NO-sensitive electrode. NO release by control cells was 337 ± 61 and 690 ± 126 pA in ET-1-treated cells ( P < 0.05; n = 5). Taken together, these data suggest that ET-1 stimulates THAL eNOS, activating ETB receptors and PI3K and thereby increasing NO production.


Sign in / Sign up

Export Citation Format

Share Document