scholarly journals Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism

2017 ◽  
Vol 114 (45) ◽  
pp. E9740-E9749 ◽  
Author(s):  
Jae Yong Ryu ◽  
Hyun Uk Kim ◽  
Sang Yup Lee

Alternative splicing plays important roles in generating different transcripts from one gene, and consequently various protein isoforms. However, there has been no systematic approach that facilitates characterizing functional roles of protein isoforms in the context of the entire human metabolism. Here, we present a systematic framework for the generation of gene-transcript-protein-reaction associations (GeTPRA) in the human metabolism. The framework in this study generated 11,415 GeTPRA corresponding to 1,106 metabolic genes for both principal and nonprincipal transcripts (PTs and NPTs) of metabolic genes. The framework further evaluates GeTPRA, using a human genome-scale metabolic model (GEM) that is biochemically consistent and transcript-level data compatible, and subsequently updates the human GEM. A generic human GEM, Recon 2M.1, was developed for this purpose, and subsequently updated to Recon 2M.2 through the framework. Both PTs and NPTs of metabolic genes were considered in the framework based on prior analyses of 446 personal RNA-Seq data and 1,784 personal GEMs reconstructed using Recon 2M.1. The framework and the GeTPRA will contribute to better understanding human metabolism at the systems level and enable further medical applications.

2019 ◽  
Author(s):  
Macauley Coggins

Genome-Scale metabolic models have proven to be incredibly useful.Allowing researchers to model cellular functionality based upon gene expression. However as the number of genes and reactions increases it can become computationally demanding. The first step in genome-scale metabolic modelling is to model the relationship between genes and reactions in the form of Gene-Protein-Reaction Associations (GPRA). In this research we have developed a way to model GPRAs on an Altera Cyclone II FPGA using Quartus II programmable logic device design software and the VHDL hardware description language. The model consisting of 7 genes and 7 reactions was implemented using 7 combinational functions and 14 I/O pins. This model will be the first step towards creating a full genome scale metabolic model on FPGA devices which we will be fully investigating in future studies.


2019 ◽  
Author(s):  
Macauley Coggins

AbstractGenome-Scale metabolic models have proven to be incredibly useful. Allowing researchers to model cellular functionality based upon gene expression. However as the number of genes and reactions increases it can become computationally demanding. The first step in genome-scale metabolic modelling is to model the relationship between genes and reactions in the form of Gene-Protein-Reaction Associations (GPRA). In this research we have developed a way to model GPRAs on an Altera Cyclone II FPGA using Quartus II programmable logic device design software and the VHDL hardware description language. The model consisting of 7 genes and 7 reactions was implemented using 7 combinational functions and 14 I/O pins. This model will be the first step towards creating a full genome scale metabolic model on FPGA devices which we will be fully investigating in future studies.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6685 ◽  
Author(s):  
Ankit Gupta ◽  
Ahmad Ahmad ◽  
Dipesh Chothwe ◽  
Midhun K. Madhu ◽  
Shireesh Srivastava ◽  
...  

The increase in greenhouse gases with high global warming potential such as methane is a matter of concern and requires multifaceted efforts to reduce its emission and increase its mitigation from the environment. Microbes such as methanotrophs can assist in methane mitigation. To understand the metabolic capabilities of methanotrophs, a complete genome-scale metabolic model (GSMM) of an obligate methanotroph,Methylococcus capsulatusstr. Bath was reconstructed. The model contains 535 genes, 899 reactions and 865 metabolites and is namediMC535. The predictive potential of the model was validated using previously-reported experimental data. The model predicted the Entner–Duodoroff pathway to be essential for the growth of this bacterium, whereas the Embden–Meyerhof–Parnas pathway was found non-essential. The performance of the model was simulated on various carbon and nitrogen sources and found thatM. capsulatuscan grow on amino acids. The analysis of network topology of the model identified that six amino acids were in the top-ranked metabolic hubs. Using flux balance analysis, 29% of the metabolic genes were predicted to be essential, and 76 double knockout combinations involving 92 unique genes were predicted to be lethal. In conclusion, we have reconstructed a GSMM of a methanotrophMethylococcus capsulatusstr. Bath. This is the first high quality GSMM of a Methylococcus strain which can serve as an important resource for further strain-specific models of the Methylococcus genus, as well as identifying the biotechnological potential ofM. capsulatusBath.


2017 ◽  
Vol 6 (2) ◽  
pp. 149-160 ◽  
Author(s):  
P. Chellapandi ◽  
M. Bharathi ◽  
R. Prathiviraj ◽  
R. Sasikala ◽  
M. Vikraman

2021 ◽  
Vol 412 ◽  
pp. 115390
Author(s):  
Kristopher D. Rawls ◽  
Bonnie V. Dougherty ◽  
Kalyan C. Vinnakota ◽  
Venkat R. Pannala ◽  
Anders Wallqvist ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jingru Zhou ◽  
Yingping Zhuang ◽  
Jianye Xia

Abstract Background Genome-scale metabolic model (GSMM) is a powerful tool for the study of cellular metabolic characteristics. With the development of multi-omics measurement techniques in recent years, new methods that integrating multi-omics data into the GSMM show promising effects on the predicted results. It does not only improve the accuracy of phenotype prediction but also enhances the reliability of the model for simulating complex biochemical phenomena, which can promote theoretical breakthroughs for specific gene target identification or better understanding the cell metabolism on the system level. Results Based on the basic GSMM model iHL1210 of Aspergillus niger, we integrated large-scale enzyme kinetics and proteomics data to establish a GSMM based on enzyme constraints, termed a GEM with Enzymatic Constraints using Kinetic and Omics data (GECKO). The results show that enzyme constraints effectively improve the model’s phenotype prediction ability, and extended the model’s potential to guide target gene identification through predicting metabolic phenotype changes of A. niger by simulating gene knockout. In addition, enzyme constraints significantly reduced the solution space of the model, i.e., flux variability over 40.10% metabolic reactions were significantly reduced. The new model showed also versatility in other aspects, like estimating large-scale $$k_{{cat}}$$ k cat values, predicting the differential expression of enzymes under different growth conditions. Conclusions This study shows that incorporating enzymes’ abundance information into GSMM is very effective for improving model performance with A. niger. Enzyme-constrained model can be used as a powerful tool for predicting the metabolic phenotype of A. niger by incorporating proteome data. In the foreseeable future, with the fast development of measurement techniques, and more precise and rich proteomics quantitative data being obtained for A. niger, the enzyme-constrained GSMM model will show greater application space on the system level.


2012 ◽  
Vol 78 (24) ◽  
pp. 8735-8742 ◽  
Author(s):  
Yilin Fang ◽  
Michael J. Wilkins ◽  
Steven B. Yabusaki ◽  
Mary S. Lipton ◽  
Philip E. Long

ABSTRACTAccurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within anin silicomodel using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model ofGeobacter metallireducens—specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-basedin silicomodelof G. metallireducensrelates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637G. metallireducensproteins detected during the 2008 experiment were associated with specific metabolic reactions in thein silicomodel. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through thein silicomodel reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in thein silicomodel that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.


Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 456
Author(s):  
Pejman Salahshouri ◽  
Modjtaba Emadi-Baygi ◽  
Mahdi Jalili ◽  
Faiz M. Khan ◽  
Olaf Wolkenhauer ◽  
...  

The human gut microbiota plays a dual key role in maintaining human health or inducing disorders, for example, obesity, type 2 diabetes, and cancers such as colorectal cancer (CRC). High-throughput data analysis, such as metagenomics and metabolomics, have shown the diverse effects of alterations in dynamic bacterial populations on the initiation and progression of colorectal cancer. However, it is well established that microbiome and human cells constantly influence each other, so it is not appropriate to study them independently. Genome-scale metabolic modeling is a well-established mathematical framework that describes the dynamic behavior of these two axes at the system level. In this study, we created community microbiome models of three conditions during colorectal cancer progression, including carcinoma, adenoma and health status, and showed how changes in the microbial population influence intestinal secretions. Conclusively, our findings showed that alterations in the gut microbiome might provoke mutations and transform adenomas into carcinomas. These alterations include the secretion of mutagenic metabolites such as H2S, NO compounds, spermidine and TMA, as well as the reduction of butyrate. Furthermore, we found that the colorectal cancer microbiome can promote inflammation, cancer progression (e.g., angiogenesis) and cancer prevention (e.g., apoptosis) by increasing and decreasing certain metabolites such as histamine, glutamine and pyruvate. Thus, modulating the gut microbiome could be a promising strategy for the prevention and treatment of CRC.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 168
Author(s):  
John I. Hendry ◽  
Hoang V. Dinh ◽  
Debolina Sarkar ◽  
Lin Wang ◽  
Anindita Bandyopadhyay ◽  
...  

Nitrogen fixing-cyanobacteria can significantly improve the economic feasibility of cyanobacterial production processes by eliminating the requirement for reduced nitrogen. Anabaena sp. ATCC 33047 is a marine, heterocyst forming, nitrogen fixing cyanobacteria with a very short doubling time of 3.8 h. We developed a comprehensive genome-scale metabolic (GSM) model, iAnC892, for this organism using annotations and content obtained from multiple databases. iAnC892 describes both the vegetative and heterocyst cell types found in the filaments of Anabaena sp. ATCC 33047. iAnC892 includes 953 unique reactions and accounts for the annotation of 892 genes. Comparison of iAnC892 reaction content with the GSM of Anabaena sp. PCC 7120 revealed that there are 109 reactions including uptake hydrogenase, pyruvate decarboxylase, and pyruvate-formate lyase unique to iAnC892. iAnC892 enabled the analysis of energy production pathways in the heterocyst by allowing the cell specific deactivation of light dependent electron transport chain and glucose-6-phosphate metabolizing pathways. The analysis revealed the importance of light dependent electron transport in generating ATP and NADPH at the required ratio for optimal N2 fixation. When used alongside the strain design algorithm, OptForce, iAnC892 recapitulated several of the experimentally successful genetic intervention strategies that over produced valerolactam and caprolactam precursors.


Sign in / Sign up

Export Citation Format

Share Document