Cyclic-di-GMP regulation promotes survival of a slow-replicating subpopulation of intracellularSalmonellaTyphimurium
SalmonellaTyphimurium can invade and survive within macrophages where the bacterium encounters a range of host environmental conditions. Like many bacteria,S.Typhimurium rapidly responds to changing environments by the use of second messengers such as cyclic di-GMP (c-di-GMP). Here, we generate a fluorescent biosensor to measure c-di-GMP concentrations in thousands of individual bacteria during macrophage infection and to define the sensor enzymes important to c-di-GMP regulation. Three sensor phosphodiesterases were identified as critical to maintaining low c-di-GMP concentrations generated after initial phagocytosis by macrophages. Maintenance of low c-di-GMP concentrations by these phosphodiesterases was required to promote survival within macrophages and virulence for mice. Attenuation ofS. Typhimurium virulence was due to overproduction of c-di-GMP−regulated cellulose, as deletion of the cellulose synthase machinery restored virulence to a strain lacking enzymatic activity of the three phosphodiesterases. We further identified that the cellulose-mediated reduction in survival was constrained to a slow-replicating persister population ofS.Typhimurium induced within the macrophage intracellular environment. As utilization of glucose has been shown to be required forS.Typhimurium macrophage survival, one possible hypothesis is that this persister population requires the glucose redirected to the synthesis of cellulose to maintain a slow-replicating, metabolically active state.