scholarly journals Insights into the rheology of cohesive granular media

2020 ◽  
Vol 117 (15) ◽  
pp. 8366-8373 ◽  
Author(s):  
Sandip Mandal ◽  
Maxime Nicolas ◽  
Olivier Pouliquen

Characterization and prediction of the “flowability” of powders are of paramount importance in many industries. However, our understanding of the flow of powders like cement or flour is sparse compared to the flow of coarse, granular media like sand. The main difficulty arises because of the presence of adhesive forces between the grains, preventing smooth and continuous flows. Several tests are used in industrial contexts to probe and quantify the “flowability” of powders. However, they remain empirical and would benefit from a detailed study of the physics controlling flow dynamics. Here, we attempt to fill the gap by performing intensive discrete numerical simulations of cohesive grains flowing down an inclined plane. We show that, contrary to what is commonly perceived, the cohesive nature of the flow is not entirely controlled by the interparticle adhesion, but that stiffness and inelasticity of the grains also play a significant role. For the same adhesion, stiffer and less dissipative grains yield a less cohesive flow. This observation is rationalized by introducing the concept of a dynamic, “effective” adhesive force, a single parameter, which combines the effects of adhesion, elasticity, and dissipation. Based on this concept, a rheological description of the flow is proposed for the cohesive grains. Our results elucidate the physics controlling the flow of cohesive granular materials, which may help in designing new approaches to characterize the “flowability” of powders.

Soft Matter ◽  
2021 ◽  
Author(s):  
Jingwu Pan ◽  
Jingbei Chen ◽  
Jian Li

Numerical simulations and laboratory experiments are conducted for the spiral upward phenomenal motion of self-propulsion spherical intruder in granular media. Dynamic particle buoyancy and particle Saffman lift are proposed to...


2011 ◽  
Vol 22 (03) ◽  
pp. 271-281 ◽  
Author(s):  
SHINJI KUKIDA ◽  
JUN TANIMOTO ◽  
AYA HAGISHIMA

Many cellular automaton models (CA models) have been applied to analyze traffic flow. When analyzing multilane traffic flow, it is important how we define lane-changing rules. However, conventional models have used simple lane-changing rules that are dependent only on the distance from neighboring vehicles. We propose a new lane-changing rule considering velocity differences with neighboring vehicles; in addition, we embed the rules into a variant of the Nagel–Schreckenberg (NaSch) model, called the S-NFS model, by considering an open boundary condition. Using numerical simulations, we clarify the basic characteristics resulting from different assumptions with respect to lane changing.


2009 ◽  
Vol 1240 ◽  
Author(s):  
Qiang Shi ◽  
Kai-Tak Wan ◽  
Shing-Chung Wong ◽  
Pei Chen ◽  
Todd A. Blackledge

AbstractDue to the difficulty in handling nanofibers, little is reported and understood on the dry adhesion between electrospun nanofibers. In this study, we develop a technique to measure the dry adhesive forces between electrospun nanofibers. Of critical importance is the ability to mimic naturally occurring dry adhesion such as that between gecko's and spider's foot hairs and untreated surfaces. The adhesion test was performed on two poly(e-caprolactone) electrospun ultrafine fibers using a nanoforce tensile tester. It was found that the adhesive force per unit area increased with decreasing fiber diameter. The degree of crystallinity, order parameters of macromolecules in the amorphous region and crystallite orientation of the spun fibers were determined by the differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The high measured adhesion between single PCL fibers in comparison to other reported values was attributed to crystal orientation due to electrospinning and the increase of adhesive force per unit area with decreasing fiber diameter.


2020 ◽  
Author(s):  
Philipp Eichheimer ◽  
Marcel Thielmann ◽  
Wakana Fujita ◽  
Gregor J. Golabek ◽  
Michihiko Nakamura ◽  
...  

Abstract. Fluid flow on different scales is of interest for several Earth science disciplines like petrophysics, hydrogeology and volcanology. To parameterize fluid flow in large-scale numerical simulations (e.g. groundwater and volcanic systems), flow properties on the microscale need to be considered. For this purpose experimental and numerical investigations of flow through porous media over a wide range of porosities are necessary. In the present study we sinter glass bead media with various porosities. The microstructure, namely effective porosity and effective specific surface, is investigated using image processing. We determine flow properties like hydraulic tortuosity and permeability using both experimental measurements and numerical simulations. By fitting microstructural and flow properties to porosity, we obtain a modified Kozeny-Carman equation for isotropic low-porosity media, that can be used to simulate permeability in large-scale numerical models. To verify the modified Kozeny-Carman equation we compare it to the computed and measured permeability values.


1993 ◽  
Vol 07 (09n10) ◽  
pp. 1779-1788 ◽  
Author(s):  
JASON A.C. GALLAS ◽  
HANS J. HERRMANN ◽  
STEFAN SOKOLOWSKI

When sand or other granular materials are shaken, poured or sheared many intriguing phenomena can be observed. We will model the granular medium by a packing of elastic spheres and simulate it via Molecular Dynamics. Dissipation of energy and shear friction at collisions are included. The onset of fluidization can be determined and is in good agreement with experiments. On a vibrating plate we observe the formation of convection cells due to walls or amplitude modulations. Density and velocity profiles on conveyor belts are measured and the influence of an obstacle discussed. We mention various types of rheology for flow down an inclined chute or through a pipe and outflowing containers.


1994 ◽  
Vol 103 (1-4) ◽  
pp. 63-78 ◽  
Author(s):  
R. Gudhe ◽  
K. R. Rajagopal ◽  
M. Massoudi

2009 ◽  
Author(s):  
Hubert King ◽  
Paul Chaikin ◽  
Deniz Ertas ◽  
Arnold Kushnick ◽  
Steven W. Meier ◽  
...  

2000 ◽  
Vol 203 (12) ◽  
pp. 1887-1895 ◽  
Author(s):  
Y. Jiao ◽  
S. Gorb ◽  
M. Scherge

The tarsi of the cricket Tettigonia viridissima bear flexible attachment pads that are able to deform, replicating the profile of a surface to which they are apposed. This attachment system is supplemented by a secretion produced by epidermal cells and transported onto the surface of the pad through the pore canals of the pad cuticle. This study shows that the secretion alone is necessary, but not sufficient, for adhesion. To account for the full adhesive force, the deformation of the pad and the resulting changes in contact area were considered. In two series of experiments, the adhesive properties of the secretion and the adhesion of the whole pad were measured using a force tester, the sensitivity of which ranged from micronewtons to centinewtons. The adhesive forces of the secretion measured between a smooth sapphire ball with a diameter of 1.47 mm and a flat silicon surface ranged from 0.1 to 0.6 mN. In a control experiment on the silicon surface without secretion, no adhesive force was measured. There was no dependence of the adhesive force on the applied compressive force. When an intact pad was pulled off a flat silicon surface, the adhesive force increased with increasing applied compressive force, but it did not increase further once the applied force exceeded a certain value. The saturated adhesive force, ranging from 0.7 to 1.2 mN, was obtained at applied forces of 0.7-1.5 mN. The hemispherical surface of the pad had a larger contact area and demonstrated greater adhesion under a larger applied force. Adhesion became saturated when a pad was deformed such that contact area was maximal. The tenacity (the adhesive force per unit area) was 1.7-2.2 mN mm(−)(2).


Sign in / Sign up

Export Citation Format

Share Document