fully developed flow
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 34)

H-INDEX

39
(FIVE YEARS 3)

Author(s):  
Grigorios Pantoleontos ◽  
Ioanna Marina Anagnostara ◽  
Maria Syrigou ◽  
Athanasios G. Konstandopoulos

2021 ◽  
Vol 13 (2) ◽  
pp. 24
Author(s):  
Roberto Silva ◽  
English English ◽  
Español Español ◽  
Español Español ◽  
Español Español

This article involves the study and analysis of the fully developed flow of a magnetorheological fluid through a non-isotropic porous medium under the effect of an external, uniform, and transversal magnetic field. Permeability is taken as an exponential distribution function of the transverse direction. The Darcy-Brinkman-Lapwood-Lorentz equation for the fluid flow in porous media has been used and solved under non-slip boundary conditions by Modified Homotopy Perturbation Method and the results validated by the Numerical Shooting Method. Finally, the analysis of results is made of the influence on the velocity, volumetric flow, and wall shear stress.


Author(s):  
Farhan Ahmed

During this study, we have investigated the effect of magnetic field on heat transfer flow of an electrically conducting magneto-hydrodynamic, ( MHD) nano fluid through annular sector duct. The problem is formulated under the assumption of fully developed flow by ignoring the deviation of velocity components in the axial direction only; and simulated with the help of semi implicit method for pressure linked equations revised, ( SIMPLER). The effect of Hartman number, M, on fully developed forced convection flow has been determined for different values of Copper nano particles contribution in base fluid, ϕ, apex angle, β and ratio of radii, Ȓ. With increase in the value of M, a prominent effect has been observed on friction factor, fRe. Furthermore, the influence of nano particles contribution on friction factor, fRe, has been dominated, when we increase the value of M.


Author(s):  
M. Salinas-Vázquez ◽  
J. Ramírez-Cruz ◽  
W. Vicente ◽  
E. Martínez-Espinosa ◽  
H.M. Aviña-Jiménezez ◽  
...  

2021 ◽  
Author(s):  
Yongjia Zhu

The spatial variations of liquid distribution and local mass transfer coefficient in a 0.30-m column of 25.4-m Pall rings were investigated. The data of liquid distribution was collected with a 39-cell liquid collector and a wall-flow tube from a doubled-wall section in the column at the packing-support level. The local mass transfer coefficients were measured via the electrochemical technique by individual cathodic nickel-coated Pall rings placed at various spatial positions. Both measurements were conducted at various fluid flow rates with three liquid distributor designs at different bed heights. Liquid distribution and local mass transfer coefficients observed were far from uniform in the column. The wall flow developed along the packed bed until a fully developed flow pattern was reached. With more uniform initial liquid distribution, the less packing height needed to reach the fully developed flow pattern along with higher the mass transfer efficiency in the column. Ladder-type liquid distributor (LLD) showed less angular effect in measurements. Increasing the liquid flow rate slightly improved the uniformity of liquid distribution and enhanced the mass transfer. No influence of gas flow rate on liquid distribution and mass transfer coefficient was found at the range of gas flow rates used. These gas flow rates were much lower than the loading point. Liquid maldistribution factor and mass transfer maldistribution factor decreased with increases in the uniformity of the initial liquid distribution. These values were 0.21(0.48). 0.16(0.26) and 0.14(0.22) for single-point liquid distributor (SPLD), cross-type liquid distributor (CLD) and LLD, respectively. By comparison, a good agreement was observed on the relation of liquid maldistribution factor and mass transfer maldistribution factor.


2021 ◽  
Author(s):  
Yongjia Zhu

The spatial variations of liquid distribution and local mass transfer coefficient in a 0.30-m column of 25.4-m Pall rings were investigated. The data of liquid distribution was collected with a 39-cell liquid collector and a wall-flow tube from a doubled-wall section in the column at the packing-support level. The local mass transfer coefficients were measured via the electrochemical technique by individual cathodic nickel-coated Pall rings placed at various spatial positions. Both measurements were conducted at various fluid flow rates with three liquid distributor designs at different bed heights. Liquid distribution and local mass transfer coefficients observed were far from uniform in the column. The wall flow developed along the packed bed until a fully developed flow pattern was reached. With more uniform initial liquid distribution, the less packing height needed to reach the fully developed flow pattern along with higher the mass transfer efficiency in the column. Ladder-type liquid distributor (LLD) showed less angular effect in measurements. Increasing the liquid flow rate slightly improved the uniformity of liquid distribution and enhanced the mass transfer. No influence of gas flow rate on liquid distribution and mass transfer coefficient was found at the range of gas flow rates used. These gas flow rates were much lower than the loading point. Liquid maldistribution factor and mass transfer maldistribution factor decreased with increases in the uniformity of the initial liquid distribution. These values were 0.21(0.48). 0.16(0.26) and 0.14(0.22) for single-point liquid distributor (SPLD), cross-type liquid distributor (CLD) and LLD, respectively. By comparison, a good agreement was observed on the relation of liquid maldistribution factor and mass transfer maldistribution factor.


Sign in / Sign up

Export Citation Format

Share Document