scholarly journals Hurricane effects on Neotropical lizards span geographic and phylogenetic scales

2020 ◽  
Vol 117 (19) ◽  
pp. 10429-10434 ◽  
Author(s):  
Colin M. Donihue ◽  
Alex M. Kowaleski ◽  
Jonathan B. Losos ◽  
Adam C. Algar ◽  
Simon Baeckens ◽  
...  

Extreme climate events such as droughts, cold snaps, and hurricanes can be powerful agents of natural selection, producing acute selective pressures very different from the everyday pressures acting on organisms. However, it remains unknown whether these infrequent but severe disruptions are quickly erased by quotidian selective forces, or whether they have the potential to durably shape biodiversity patterns across regions and clades. Here, we show that hurricanes have enduring evolutionary impacts on the morphology of anoles, a diverse Neotropical lizard clade. We first demonstrate a transgenerational effect of extreme selection on toepad area for two populations struck by hurricanes in 2017. Given this short-term effect of hurricanes, we then asked whether populations and species that more frequently experienced hurricanes have larger toepads. Using 70 y of historical hurricane data, we demonstrate that, indeed, toepad area positively correlates with hurricane activity for both 12 island populations of Anolis sagrei and 188 Anolis species throughout the Neotropics. Extreme climate events are intensifying due to climate change and may represent overlooked drivers of biogeographic and large-scale biodiversity patterns.

2017 ◽  
Vol 23 (10) ◽  
pp. 4045-4057 ◽  
Author(s):  
Ross E. Boucek ◽  
Michael R. Heithaus ◽  
Rolando Santos ◽  
Philip Stevens ◽  
Jennifer S. Rehage

2019 ◽  
Vol 96 ◽  
pp. 669-683 ◽  
Author(s):  
Enliang Guo ◽  
Jiquan Zhang ◽  
Yongfang Wang ◽  
Lai Quan ◽  
Rongju Zhang ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109126 ◽  
Author(s):  
Selena Ahmed ◽  
John Richard Stepp ◽  
Colin Orians ◽  
Timothy Griffin ◽  
Corene Matyas ◽  
...  

Ecology ◽  
2019 ◽  
Vol 100 (2) ◽  
pp. e02578 ◽  
Author(s):  
Martina Dal Bello ◽  
Luca Rindi ◽  
Lisandro Benedetti‐Cecchi

2021 ◽  
Vol 15 (3) ◽  
pp. e0009182
Author(s):  
Cameron Nosrat ◽  
Jonathan Altamirano ◽  
Assaf Anyamba ◽  
Jamie M. Caldwell ◽  
Richard Damoah ◽  
...  

Climate change and variability influence temperature and rainfall, which impact vector abundance and the dynamics of vector-borne disease transmission. Climate change is projected to increase the frequency and intensity of extreme climate events. Mosquito-borne diseases, such as dengue fever, are primarily transmitted by Aedes aegypti mosquitoes. Freshwater availability and temperature affect dengue vector populations via a variety of biological processes and thus influence the ability of mosquitoes to effectively transmit disease. However, the effect of droughts, floods, heat waves, and cold waves is not well understood. Using vector, climate, and dengue disease data collected between 2013 and 2019 in Kenya, this retrospective cohort study aims to elucidate the impact of extreme rainfall and temperature on mosquito abundance and the risk of arboviral infections. To define extreme periods of rainfall and land surface temperature (LST), we calculated monthly anomalies as deviations from long-term means (1983–2019 for rainfall, 2000–2019 for LST) across four study locations in Kenya. We classified extreme climate events as the upper and lower 10% of these calculated LST or rainfall deviations. Monthly Ae. aegypti abundance was recorded in Kenya using four trapping methods. Blood samples were also collected from children with febrile illness presenting to four field sites and tested for dengue virus using an IgG enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). We found that mosquito eggs and adults were significantly more abundant one month following an abnormally wet month. The relationship between mosquito abundance and dengue risk follows a non-linear association. Our findings suggest that early warnings and targeted interventions during periods of abnormal rainfall and temperature, especially flooding, can potentially contribute to reductions in risk of viral transmission.


Sign in / Sign up

Export Citation Format

Share Document