scholarly journals Basal ganglia beta oscillations during sleep underlie Parkinsonian insomnia

2020 ◽  
Vol 117 (29) ◽  
pp. 17359-17368
Author(s):  
Aviv D. Mizrahi-Kliger ◽  
Alexander Kaplan ◽  
Zvi Israel ◽  
Marc Deffains ◽  
Hagai Bergman

Sleep disorders are among the most debilitating comorbidities of Parkinson’s disease (PD) and affect the majority of patients. Of these, the most common is insomnia, the difficulty to initiate and maintain sleep. The degree of insomnia correlates with PD severity and it responds to treatments that decrease pathological basal ganglia (BG) beta oscillations (10–17 Hz in primates), suggesting that beta activity in the BG may contribute to insomnia. We used multiple electrodes to record BG spiking and field potentials during normal sleep and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism in nonhuman primates. MPTP intoxication resulted in severe insomnia with delayed sleep onset, sleep fragmentation, and increased wakefulness. Insomnia was accompanied by the onset of nonrapid eye movement (NREM) sleep beta oscillations that were synchronized across the BG and cerebral cortex. The BG beta oscillatory activity was associated with a decrease in slow oscillations (0.1–2 Hz) throughout the cortex, and spontaneous awakenings were preceded by an increase in BG beta activity and cortico-BG beta coherence. Finally, the increase in beta oscillations in the basal ganglia during sleep paralleled decreased NREM sleep, increased wakefulness, and more frequent awakenings. These results identify NREM sleep beta oscillation in the BG as a neural correlate of PD insomnia and suggest a mechanism by which this disorder could emerge.

2020 ◽  
Author(s):  
L. Iskhakova ◽  
P. Rappel ◽  
G. Fonar ◽  
O. Marmor ◽  
R. Paz ◽  
...  

AbstractBeta oscillatory activity (13-30Hz) is pervasive within the cortico-basal ganglia (CBG) network. Studies in Parkinson’s disease (PD) patients and animal models suggested that beta-power increases with dopamine depletion. However, the exact relationship between oscillatory power, frequency and dopamine-tone remains unclear. We recorded neural activity in the CBG network of non-human-primates (NHP) while acutely up- and down-modulating dopamine levels. Further, we assessed changes in beta oscillations of PD patients following acute and chronic changes in dopamine-tone. Beta oscillation frequency was strongly coupled with dopamine-tone in both NHPs and human patients. In contrast, power, coherence between single-units and LFP, and spike-LFP phase-locking were not systematically regulated by dopamine levels. These results demonstrate via causal manipulations that frequency, rather than other properties, is the key property of pathological oscillations in the CBG networks. These insights can lead to improvements in understanding of CBG physiology, PD progression tracking and patient care.


2018 ◽  
Author(s):  
Marie Masako Lacroix ◽  
Gaetan de Lavilléon ◽  
Julie Lefort ◽  
Karim El Kanbi ◽  
Sophie Bagur ◽  
...  

AbstractRodents are the main animal model to study sleep. Yet, in spite of a large consensus on the distinction between rapid-eye-movements sleep (REM) and non-REM sleep (NREM) in both humans and rodent, there is still no equivalent in mice of the NREM subdivision classically described in humans.Here we propose a classification of sleep stages in mice, inspired by human sleep scoring. By using chronic recordings in medial prefrontal cortex (mPFC) and hippocampus we can classify three NREM stages with a stage N1 devoid of any low oscillatory activity and N3 with a high density of delta waves. These stages displayed the same evolution observed in human during the whole sleep or within sleep cycles. Importantly, as in human, N1 in mice is the first stage observed at sleep onset and is increased after sleep fragmentation in Orexin-/- mice, a mouse model of narcolepsy.We also show that these substages are associated to massive modification of neuronal activity. Moreover, considering these stages allows to predict mPFC neurons evolution of firing rates across sleep period. Notably, neurons preferentially active within N3 decreased their activity over sleep while the opposite is seen for those preferentially active in N1 and N2.Overall this new approach shows the feasibility of NREM sleep sub-classification in rodents, and, in regard to the similarity between sleep in both species, will pave the way for further studies in sleep pathologies given the perturbation of specific sleep substages in human pathologies such as insomnia, somnambulism, night terrors, or fibromyalgia.


2020 ◽  
Author(s):  
Petra Fischer ◽  
Alek Pogosyan ◽  
Alexander L Green ◽  
Tipu Z Aziz ◽  
Jonathan Hyam ◽  
...  

Beta oscillations are readily observed in motor cortex and the basal ganglia, but to which extent they are functionally relevant is unclear. To understand how activity transfer between different nodes of the cortico-basal ganglia network is affected by cortical beta oscillations in different behavioural conditions, we recorded local field potentials and electroencephalography (EEG) activity in a low-force motor control task and during rest in Parkinson's patients undergoing deep brain stimulation (DBS) surgery. The patients received DBS of either the subthalamic nucleus (STN) or the internal globus pallidus (GPi), which allowed us to investigate if STN and GPi broad-band high-frequency activity (HFA; >150 Hz) is co-modulated with the phase of motor cortical beta activity. We found significant modulation patterns in the STN and the GPi, which were inverted while patients performed the task, showing that GPi activity fluctuations likely are crafted by other inputs than the direct excitatory STN afferents. We also found that consistent STN modulation disappeared during rest, showing disengagement in this condition, while GPi modulation was maintained, again evidencing that beta-band activity fluctuations in the GPi can be relatively independent of those in the STN. The difference between HFA modulation patterns in the task and rest recordings suggests a potential functional role of beta phase-locked HFA modulation in controlling sustained contractions. Examination of HFA co-modulation patterns at different sites of the cortico-basal ganglia-thalamo-cortical network under different behavioural conditions may provide a tool with which to define the impact of beta synchronization on network communication.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
L. Iskhakova ◽  
P. Rappel ◽  
M. Deffains ◽  
G. Fonar ◽  
O. Marmor ◽  
...  

AbstractΒeta oscillatory activity (human: 13–35 Hz; primate: 8–24 Hz) is pervasive within the cortex and basal ganglia. Studies in Parkinson’s disease patients and animal models suggest that beta-power increases with dopamine depletion. However, the exact relationship between oscillatory power, frequency and dopamine tone remains unclear. We recorded neural activity in the cortex and basal ganglia of healthy non-human primates while acutely and chronically up- and down-modulating dopamine levels. We assessed changes in beta oscillations in patients with Parkinson’s following acute and chronic changes in dopamine tone. Here we show beta oscillation frequency is strongly coupled with dopamine tone in both monkeys and humans. Power, coherence between single-units and local field potentials (LFP), spike-LFP phase-locking, and phase-amplitude coupling are not systematically regulated by dopamine levels. These results demonstrate that beta frequency is a key property of pathological oscillations in cortical and basal ganglia networks.


2020 ◽  
Vol 4 (2) ◽  
pp. 167-176
Author(s):  
Achim Elfering ◽  
Christin Gerhardt ◽  
Diana Pereira ◽  
Anna Schenker ◽  
Maria U. Kottwitz

Abstract Purpose Accidents are more likely to occur during the morning hours of Mondays (Monday effect). This might be due to a higher level of cognitive failure on Monday morning at work. Methods In a pilot actigraphy study across one working week, we explored this Monday effect and regressed daily self-reported workplace cognitive failure on weekdays (Monday versus other days), background social stressors at work, delayed sleep onset and sleep duration. Diary data were gathered from 40 full-time employees. Results Confirming our assumptions, results revealed work-related cognitive failure and sleep-onset latency on the previous night to be higher on Mondays compared to other workdays. Work-related cognitive failure correlated positively with delayed sleep-onset latency and background social stressors. In multilevel regression analysis, Monday significantly explained variations in workplace cognitive failure. The addition of background social stressors at work and sleep-onset latency to the regression model showed unique contributions to the prediction of workplace cognitive failure. No significant two-way or three-way interactions between working days, sleep-onset latency or sleep duration, and background social stressors were found. Conclusion Peak levels of cognitive failure on Monday morning and the association of cognitive failure with social stressors at work contribute to understanding the mechanisms involved in the increased prevalence of occupational accidents on Monday morning. Occupational safety interventions should address both social stressors at work and individual sleep hygiene.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A91-A92
Author(s):  
Babita Pande ◽  
Meenakshi Sinha ◽  
Ramanjan Sinha

Abstract Introduction Lockdown and stay home order has been imposed on people in many countries including India to prevent the community transmission of COVID-19 pandemic. However this social restriction led to disturbed daily routine and lifestyle behaviour that is needed to be attended for proper therapeutic management of overall health during such crisis. The impact of lockdown on the most apparent behavioral changes viz. sleep-wake behaviour, major meal timings, and digital screen duration of Indians were investigated. In addition the effects of gender and age were explored. Methods After seeking permission from Ethical Institution, an online questionnaire based survey was circulated within India in the first week of May, 2020 for which total 1511 male and female (age ≥18 years) subjects participated. The sleep-wake behavior observed were sleep-wake timings, sleep duration, mid sleep time (MST) as function of lockdown, and social (lockdown) jetlag (SJL = MST before lockdown-MST during lockdown). Results The sleep onset-wakeup and meal times were significantly delayed during lockdown, which was more pronounced in younger age group. The sleep duration increased, specifically in young individuals during lockdown. Females showed more delayed sleep onset-waking times and first meal timing with longer sleep duration during lockdown. Increased digital media duration was observed in all age groups, primarily in males. The younger age group and specifically female reported higher SJL and delayed MST. A positive association was obtained between sleep duration & first meal time, and SJL & major meal timings/screen duration, and a significant negative relationship of sleep duration and SJL with age. Conclusion The study shows delayed sleep-wake schedule, meal timings and increased digital media duration among Indians during COVID-19 lockdown compared to before lockdown. Also, gender and age emerged as important mediating factors for this alteration. The pandemic has given opportunity to sleep more and compensate for the sleep. In spite of that, the higher social jetlag in young age group and female showed the compromised sleep and maladaption with societal timing. These findings have applied implications in sleep health during longer social isolation conditions and for proper therapeutic management. Support (if any) No


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jing Guang ◽  
Halen Baker ◽  
Orilia Ben-Yishay Nizri ◽  
Shimon Firman ◽  
Uri Werner-Reiss ◽  
...  

AbstractDeep brain stimulation (DBS) is currently a standard procedure for advanced Parkinson’s disease. Many centers employ awake physiological navigation and stimulation assessment to optimize DBS localization and outcome. To enable DBS under sedation, asleep DBS, we characterized the cortico-basal ganglia neuronal network of two nonhuman primates under propofol, ketamine, and interleaved propofol-ketamine (IPK) sedation. Further, we compared these sedation states in the healthy and Parkinsonian condition to those of healthy sleep. Ketamine increases high-frequency power and synchronization while propofol increases low-frequency power and synchronization in polysomnography and neuronal activity recordings. Thus, ketamine does not mask the low-frequency oscillations used for physiological navigation toward the basal ganglia DBS targets. The brain spectral state under ketamine and propofol mimicked rapid eye movement (REM) and Non-REM (NREM) sleep activity, respectively, and the IPK protocol resembles the NREM-REM sleep cycle. These promising results are a meaningful step toward asleep DBS with nondistorted physiological navigation.


NeuroImage ◽  
2015 ◽  
Vol 119 ◽  
pp. 13-19 ◽  
Author(s):  
Ernest Mas-Herrero ◽  
Pablo Ripollés ◽  
Azadeh HajiHosseini ◽  
Antoni Rodríguez-Fornells ◽  
Josep Marco-Pallarés

Author(s):  
Jon López-Azcárate ◽  
María Jesús Nicolás ◽  
Ivan Cordon ◽  
Manuel Alegre ◽  
Miguel Valencia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document