beta activity
Recently Published Documents


TOTAL DOCUMENTS

449
(FIVE YEARS 154)

H-INDEX

38
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Jaime Ibanez ◽  
Blanka Zicher ◽  
Kate Brown ◽  
Lorenzo Rocchi ◽  
Andrea Casolo ◽  
...  

Transcranial alternating current stimulation (TACS) is commonly used to synchronise the output of a cortical area to other parts of the nervous system, but evidence for this based on brain recordings in humans is challenging. The brain transmits beta oscillations (~21Hz) to tonically contracted limb muscles linearly and through the fastest corticospinal pathways. Therefore, muscle activity may be used as a proxy measure for the level of beta entrainment in the corticospinal tract due to TACS over motor cortex. Here, we assessed if TACS is able to modulate the neural inputs to muscles, which would provide an indirect evidence for TACS-driven neural entrainment. In the first part of this study, we ran a series of simulations of motor neuron (MN) pools receiving inputs from corticospinal neurons with different levels of beta entrainment. Results indicated that MNs should be highly sensitive to changes in corticospinal beta activity. Then, we ran experiments on healthy human subjects (N=10) in which TACS (at 1mA) was delivered over the motor cortex at 21Hz (beta stimulation), or at 7Hz or 40Hz (control conditions) while the abductor digiti minimi (ADM) or the tibialis anterior muscle (TA) were tonically contracted. Muscle activity was measured using high-density electromyography, which allowed us to decompose the spiking activity of pools of motor units innervating the studied muscles. By analysing motor unit pool activity, we observed that none of the tested TACS conditions could consistently alter the spectral characteristics of the common neural inputs received by the muscles. These results suggest that 1mA-TACS over motor cortex given at frequencies in the beta band does not affect corticospinal beta entrainment.


2021 ◽  
Author(s):  
Marie Blume ◽  
Ricarda Schmidt ◽  
Jennifer Schmidt ◽  
Alexandra Martin ◽  
Anja Hilbert

AbstractSpecific alterations in electroencephalography (EEG)-based brain activity have recently been linked to binge-eating disorder (BED), generating interest in treatment options targeting these neuronal processes. This randomized-controlled pilot study examined the effectiveness and feasibility of two EEG neurofeedback paradigms in the reduction of binge eating, eating disorder and general psychopathology, executive functioning, and EEG activity. Adults with BED and overweight (N = 39) were randomly assigned to either a food-specific EEG neurofeedback paradigm, aiming at reducing fronto-central beta activity and enhancing theta activity after viewing highly palatable food pictures, or a general EEG neurofeedback paradigm training the regulation of slow cortical potentials. In both conditions, the study design included a waiting period of 6 weeks, followed by 6 weeks EEG neurofeedback (10 sessions à 30 min) and a 3-month follow-up period. Both EEG neurofeedback paradigms significantly reduced objective binge-eating episodes, global eating disorder psychopathology, and food craving. Approximately one third of participants achieved abstinence from objective binge-eating episodes after treatment without any differences between treatments. These results were stable at 3-month follow-up. Among six measured executive functions, only decision making improved at posttreatment in both paradigms, and cognitive flexibility was significantly improved after food-specific neurofeedback only. Both EEG neurofeedback paradigms were equally successful in reducing relative beta and enhancing relative theta power over fronto-central regions. The results highlight EEG neurofeedback as a promising treatment option for individuals with BED. Future studies in larger samples are needed to determine efficacy and treatment mechanisms.


2021 ◽  
Author(s):  
Rose Nasrawi ◽  
Freek van Ede

Working memory allows us to retain visual information to guide upcoming future behavior. In line with this future-oriented purpose of working memory, recent studies have shown that action planning occurs during encoding and retention of a single visual item, for which the upcoming action is certain. We asked whether and how this extends to multi-item visual working memory, when visual representations serve the potential future. Human participants performed a visual working memory task with a memory-load manipulation (one/two/four items), and a delayed orientation-reproduction report (of one item). We measured EEG to track 15-25 Hz beta activity in electrodes contralateral to the required response hand - a canonical marker of action planning. We show an attenuation of beta activity, not only in load one (with one certain future action), but also in load two (with two potential future actions), compared to load four (with low prospective-action certainty). Moreover, in load two, potential action planning occurs regardless whether both visual items afford similar or dissimilar manual responses; and it predicts the speed of ensuing memory-guided behavior. This shows that potential action planning occurs during multi- item visual working memory, and brings the perspective that working memory helps us prepare for the potential future.


Vestnik ◽  
2021 ◽  
pp. 29-34
Author(s):  
Д.А. Митрохин ◽  
М.М. Ибрагимов ◽  
Б.Р. Нурмухамбетова ◽  
Н.Ш. Буйракулова ◽  
В.В. Харченко ◽  
...  

Значимость биоэлектрической активности головного мозга в оценке функционального состояния нервной системы при цереброваскулярных заболеваниях широко известна. В настоящей работе показана характеристика биоэлектрической активности головного мозга у больных, перенесших острое нарушение мозгового кровообращения. В данной статье приведены данные о том, что у больных в остром и раннем восстановительном периодах церебрального инсульта биоэлектрическая активность головного мозга характеризовалась, в основном, десинхронным и дезорганизованным типами электроэнцефалограммы. Вместе с тем, отмечались, выраженная дельта и тета активность, а также единичные острые волны, спайки, преимущественно в пораженном полушарии головного мозга, реже в контралатеральном полушарии, межполушарная асимметрия, повышение мощности спектров в сторону преобладания медленных волн. Показатели индекса когерентности по всем отведениям были снижены, что свидетельствует о нарушении функциональных межполушарных взаимосвязей. Более значительное повышение индекса когерентности в дельта и тета диапазонах у пациентов, перенесших геморрагический инсульт, может указывать на более грубые межполушарные нарушения, в сравнении с ишемическим инсультом. Результаты исследования относительной спектральной плотности мощности диапазонов показали, что при геморрагическом инсульте отмечена более высокая дельта и бета активность, а также более значительное снижение мощности альфа ритма, в сравнении с ишемическим инсультом. В тоже время, отмечается повышение интегрального индекса диапазона низкочастотной медленно-волновой активности, особенно выраженное у больных с геморрагическим инсультом р<0,05. The significance of bioelectric activity of the brain in assessing the functional state of the nervous system in cerebrovascular diseases is widely known. In this paper, the characteristics of the bioelectric activity of the brain in patients with acute cerebral circulatory disorders are shown. This article presents data that in patients with acute and early recovery periods of cerebral stroke , the bioelectric activity of the brain was characterized mainly by desynchronous and disorganized types of electroencephalogram. At the, same time, pronounced delta and theta activity was noted , as well as single acute waves, spikes, mainly in the affected hemisphere of the brain, less often in the contralateral hemisphere, interhemispheric asymmetry, increased spectral power in the direction of predominance of slow waves. The coherence index values for all leads were reduced, which indicates a violation of functional interhemispheric relationships. A more significant increase in the coherence index in the delta and theta ranges in patients who have had a hemorrhagic stroke may indicate more severe interhemispheric disorders compared to ischemic stroke. The results of the study of the relative spectral power density of the ranges showed, that in hemorrhagic stroke, there was a higher delta and beta activity, as well as a more significant decrease in the power of the alpha rhythm, in comparison with ischemic stroke. At the same time, there is an increase in the integral index of the range of low-frequency slow-wave activity, especially pronounced in patients with hemorrhagic stroke p < 0.05.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2414
Author(s):  
Chiara Spironelli ◽  
Francesca Fusina ◽  
Marco Bortolomasi ◽  
Alessandro Angrilli

In the last few decades, the incidence of mood disorders skyrocketed worldwide and has brought an increasing human and economic burden. Depending on the main symptoms and their evolution across time, they can be classified in several clinical subgroups. A few psychobiological indices have been extensively investigated as promising markers of mood disorders. Among these, frontal asymmetry measured at rest with quantitative EEG has represented the main available marker in recent years. Only a few studies so far attempted to distinguish the features and differences among diagnostic types of mood disorders by using this index. The present study measured frontal EEG asymmetry during a 5-min resting state in three samples of patients with bipolar disorder in a Euthymic phase (EBD, n = 17), major depressive disorder (MDD, n = 25) and persistent depressive disorder (PDD, n = 21), once termed dysthymia. We aimed to test the hypothesis that MDD and PDD lack the typical leftward asymmetry exhibited by normal as well as EBD patients, and that PDD shows greater clinical and neurophysiological impairments than MDD. Clinical scales revealed no symptoms in EBD, and significant larger anxiety and depression scores in PDD than in MDD patients. Relative beta (i.e., beta/alpha ratio) EEG asymmetry was measured from lateral frontal sites and results revealed the typical greater left than right frontal beta activity in EBD, as well as a lack of asymmetry in both MDD and PDD. The last two groups also had lower bilateral frontal beta activity in comparison with the EBD group. Results concerning group differences were interpreted by taking into account both the clinical and the neurophysiological domains.


2021 ◽  
Vol 19 (11) ◽  
pp. 22-31
Author(s):  
Sawsan Sh. Fleifil ◽  
Zahraa A. Ismail AL-Sudani

In this study, assessment of levels natural radioactivity in drinking water samples of Misan Province of Iraq was carried out. A total of 33 (Tigris river, station and Tap) water samples collected from eleven places in Misan Province of Iraq. The beta and alpha gross radioactivity of the samples water was measured and an average annual effective dose derived of drinking-water ingestion was estimation utilizing new model a LB-4110 low background gas flow proportional counter. The data indicated that the Beta and Alpha gross activities and annual effective dose in samples did not exceed WHO recommended levels (0.5 Bq/L of Alpha gross, 1.0 Bq/L of Beta gross and 0.1 mSv/y for annual effective dose).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vivien Reicher ◽  
Nóra Bunford ◽  
Anna Kis ◽  
Cecília Carreiro ◽  
Barbara Csibra ◽  
...  

AbstractAge-related differences in dog sleep and the age at which dogs reach adulthood as indexed by sleep electrophysiology are unknown. We assessed, in (1) a Juvenile sample (n = 60) of 2–14-month-old dogs (weight range: 4–68 kg), associations between age, sleep macrostructure, and non-rapid eye movement (NREM) EEG power spectrum, whether weight moderates associations, and (2) an extended sample (n = 91) of 2–30-months-old dogs, when sleep parameters stabilise. In Juvenile dogs, age was positively associated with time in drowsiness between 2 and 8 months, and negatively with time in rapid eye movement (REM) sleep between 2 and 6 months. Age was negatively associated with delta and positively with theta and alpha power activity, between 8 and 14 months. Older dogs exhibited greater sigma and beta power activity. Larger, > 8-month-old dogs had less delta and more alpha and beta activity. In extended sample, descriptive data suggest age-related power spectrum differences do not stabilise by 14 months. Drowsiness, REM, and delta power findings are consistent with prior results. Sleep electrophysiology is a promising index of dog neurodevelopment; some parameters stabilise in adolescence and some later than one year. Determination of the effect of weight and timing of power spectrum stabilisation needs further inquiry. The dog central nervous system is not fully mature by 12 months of age.


2021 ◽  
Author(s):  
Chloé Stengel ◽  
Julià Luis Amengual Roig ◽  
Tristan Moreau ◽  
Antoni Valero-Cabré

For several decades, the field of human neurophysiology has focused on the role played by cortical oscillations in enabling brain function underpinning behaviors. In parallel, a less visible but robust body of work on the stochastic resonance phenomenon has also theorized contributions of neural noise - hence more heterogeneous, complex and less predictable activity - in brain coding. The latter notion has received indirect causal support via improvements of visual function during non-regular or random brain stimulation patterns. Nonetheless, direct evidence demonstrating an impact of brain stimulation on direct measures of neural noise is still lacking. Here we evaluated the impact of three non frequency-specific TMS bursts, compared to a control pure high-beta TMS rhythm, delivered to the left FEF during a visual detection task, on the heterogeneity, predictability and complexity of ongoing brain activity recorded with scalp EEG. Our data showed surprisingly that the three non frequency-specific TMS patterns did not prevent a build-up of local high-beta activity. Nonetheless, they increased power across broader or in multiple frequency bands compared to control purely rhythmic high-beta bursts tested along. Importantly, non frequency-specific patterns enhanced signal entropy over multiple time-scales, suggesting higher complexity and an overall induction of higher levels of cortical noise than rhythmic TMS bursts. Our outcomes provide indirect evidence on a potential modulatory role played by sources of stochastic noise on brain oscillations and synchronization. Additionally, they pave the way towards the development of novel neurostimulation approaches to manipulate cortical sources of noise and further investigate their causal role in neural coding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maxciel Zortea ◽  
Gerardo Beltran ◽  
Rael Lopes Alves ◽  
Paul Vicuña ◽  
Iraci L. S. Torres ◽  
...  

AbstractSpectral power density (SPD) indexed by electroencephalogram (EEG) recordings has recently gained attention in elucidating neural mechanisms of chronic pain syndromes and medication use. We compared SPD variations between 15 fibromyalgia (FM) women in use of opioid in the last three months (73.33% used tramadol) with 32 non-users. EEG data were obtained with Eyes Open (EO) and Eyes Closed (EC) resting state. SPD peak amplitudes between EO-EC were smaller in opioid users in central theta, central beta, and parietal beta, and at parietal delta. However, these variations were positive for opioid users. Multivariate analyses of variance (ANOVAs) revealed that EO-EC variations in parietal delta were negatively correlated with the disability due to pain, and central and parietal beta activity variations were positively correlated with worse sleep quality. These clinical variables explained from 12.5 to 17.2% of SPD variance. In addition, central beta showed 67% sensitivity / 72% specificity and parietal beta showed 73% sensitivity/62% specificity in discriminating opioid users from non-users. These findings suggest oscillations in EEG might be a sensitive surrogate marker to screen FM opioid users and a promising tool to understand the effects of opioid use and how these effects relate to functional and sleep-related symptoms.


Sign in / Sign up

Export Citation Format

Share Document