scholarly journals Development of cyclic peptides with potent in vivo osteogenic activity through RaPID-based affinity maturation

2020 ◽  
Vol 117 (49) ◽  
pp. 31070-31077 ◽  
Author(s):  
Nasir K. Bashiruddin ◽  
Mikihito Hayashi ◽  
Masanobu Nagano ◽  
Yan Wu ◽  
Yukiko Matsunaga ◽  
...  

Osteoporosis is caused by a disequilibrium between bone resorption and bone formation. Therapeutics for osteoporosis can be divided into antiresorptives that suppress bone resorption and anabolics which increase bone formation. Currently, the only anabolic treatment options are parathyroid hormone mimetics or an anti-sclerostin monoclonal antibody. With the current global increases in demographics at risk for osteoporosis, development of therapeutics that elicit anabolic activity through alternative mechanisms is imperative. Blockade of the PlexinB1 and Semaphorin4D interaction on osteoblasts has been shown to be a promising mechanism to increase bone formation. Here we report the discovery of cyclic peptides by a novel RaPID (Random nonstandard Peptides Integrated Discovery) system-based affinity maturation methodology that generated the peptide PB1m6A9 which binds with high affinity to both human and mouse PlexinB1. The chemically dimerized peptide, PB1d6A9, showed potent inhibition of PlexinB1 signaling in mouse primary osteoblast cultures, resulting in significant enhancement of bone formation even compared to non-Semaphorin4D–treated controls. This high anabolic activity was also observed in vivo when the lipidated PB1d6A9 (PB1d6A9-Pal) was intravenously administered once weekly to ovariectomized mice, leading to complete rescue of bone loss. The potent osteogenic properties of this peptide shows great promise as an addition to the current anabolic treatment options for bone diseases such as osteoporosis.

2018 ◽  
Vol 19 (11) ◽  
pp. 3332 ◽  
Author(s):  
Barbara Siegenthaler ◽  
Chafik Ghayor ◽  
Bebeka Gjoksi-Cosandey ◽  
Nisarat Ruangsawasdi ◽  
Franz Weber

(1) Background: In an adult skeleton, bone is constantly renewed in a cycle of bone resorption, followed by bone formation. This coupling process, called bone remodeling, adjusts the quality and quantity of bone to the local needs. It is generally accepted that osteoporosis develops when bone resorption surpasses bone formation. Osteoclasts and osteoblasts, bone resorbing and bone forming cells respectively, are the major target in osteoporosis treatment. Inside bone and forming a complex network, the third and most abundant cells, the osteocytes, have long remained a mystery. Osteocytes are responsible for mechano-sensation and -transduction. Increased expression of the osteocyte-derived bone inhibitor sclerostin has been linked to estrogen deficiency-induced osteoporosis and is therefore a promising target for osteoporosis management. (2) Methods: Recently we showed in vitro and in vivo that NMP (N-Methyl-2-pyrrolidone) is a bioactive drug enhancing the BMP-2 (Bone Morphogenetic Protein 2) induced effect on bone formation while blocking bone resorption. Here we tested the effect of NMP on the expression of osteocyte-derived sclerostin. (3) Results: We found that NMP significantly decreased sclerostin mRNA and protein levels. In an animal model of osteoporosis, NMP prevented the estrogen deficiency-induced increased expression of sclerostin. (4) Conclusions: These results support the potential of NMP as a novel therapeutic compound for osteoporosis management, since it preserves bone by a direct interference with osteoblasts and osteoclasts and an indirect one via a decrease in sclerostin expression by osteocytes.


Bone ◽  
2020 ◽  
Vol 138 ◽  
pp. 115414
Author(s):  
Katsutoshi Hirose ◽  
Takuya Ishimoto ◽  
Yu Usami ◽  
Sunao Sato ◽  
Kaori Oya ◽  
...  

2001 ◽  
Vol 193 (3) ◽  
pp. 399-404 ◽  
Author(s):  
Muneaki Ishijima ◽  
Susan R. Rittling ◽  
Teruhito Yamashita ◽  
Kunikazu Tsuji ◽  
Hisashi Kurosawa ◽  
...  

Reduced mechanical stress to bone in bedridden patients and astronauts leads to bone loss and increase in fracture risk which is one of the major medical and health issues in modern aging society and space medicine. However, no molecule involved in the mechanisms underlying this phenomenon has been identified to date. Osteopontin (OPN) is one of the major noncollagenous proteins in bone matrix, but its function in mediating physical-force effects on bone in vivo has not been known. To investigate the possible requirement for OPN in the transduction of mechanical signaling in bone metabolism in vivo, we examined the effect of unloading on the bones of OPN−/− mice using a tail suspension model. In contrast to the tail suspension–induced bone loss in wild-type mice, OPN−/− mice did not lose bone. Elevation of urinary deoxypyridinoline levels due to unloading was observed in wild-type but not in OPN−/− mice. Analysis of the mechanisms of OPN deficiency–dependent reduction in bone on the cellular basis resulted in two unexpected findings. First, osteoclasts, which were increased by unloading in wild-type mice, were not increased by tail suspension in OPN−/− mice. Second, measures of osteoblastic bone formation, which were decreased in wild-type mice by unloading, were not altered in OPN−/− mice. These observations indicate that the presence of OPN is a prerequisite for the activation of osteoclastic bone resorption and for the reduction in osteoblastic bone formation in unloaded mice. Thus, OPN is a molecule required for the bone loss induced by mechanical stress that regulates the functions of osteoblasts and osteoclasts.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3508-3508 ◽  
Author(s):  
Patrice Boissy ◽  
Thomas Lund ◽  
Thomas L. Andersen ◽  
Torben Plesner ◽  
Jean-Marie Delaisse

Abstract Multiple myeloma (MM) leads to high risk for bone pain and fractures. MM-induced bone disease is due to acute degradation of bone matrix by osteoclasts, and absence of repair by bone forming osteoblasts. It is currently treated with bisphosphonates, highly effective bone resorption inhibitors, which do not promote but rather inhibit bone formation and may cause renal damage and osteonecrosis of the jaw. Thus, it is important to reconsider the management of MM bone disease in long-term treatment. Recent preclinical studies reported that the proteasome inhibitor Bortezomib (V) used for the treatment of MM patients can stimulate bone formation, and that in MM patients treated with V, serum levels of bone formation markers are increased. The present study aims at investigating if V may inhibit osteoclast activity. Methods: Osteoclasts were differentiated from pure populations of blood derived CD14-positive monocytes cultured with M-CSF and RANKL for 6–7 days, and treated continuously with V at various concentrations. As prolonged inhibition of proteasome activity has been reported to be toxic for any cell type, and in vivo pharmacodynamic studies have shown V to be eliminated from the vascular compartment as soon as 30min after intravenous injection, displaying maximal inhibitory activity of the proteasome within 24 hours subsiding rapidly thereafter, V was also given intermittently, to mimick the in vivo situation. Osteoclast differentiation and activity were assessed by measuring Tartrate-Resistant Acid Phosphatase (TRACP) activity in the medium. Cell viability was determined with Celltiter Blue measuring metabolic activity. To extend our observations to the clinical situation, serum levels of CTX-I, a bone resorption marker, were measured during the 3 days following therapeutic V administration in a single patient. Results: A continuous treatment of cultures with V at 4 nM and higher concentrations proved to be highly toxic for differentiating osteoclasts but also monocytes. A 3-hour-pulse treatment with V followed by a 3-day culture in the absence of V, was not toxic neither to monocytes nor to osteoclasts, even at a concentration as high as 100 nM. This 3-hour pulse was however highly toxic for myeloma cells. Interestingly, a 3-hour pulse with 25 nM V induced a 50% inhibition of the resorptive activity of osteoclasts, as assessed by culturing them for 3 days on bone slices and measuring the formation of resorption pits. The release of TRACP in the medium was inhibited to a similar extent within the first 24 hours post-pulse, but tended to return to the control level during the next 2 days. This 3-hour pulse with 25 nM V inhibited strongly RANKL-induced translocation of NF-KB in the osteoclast nuclei, an event dependent on proteasome function and critical for osteoclastic activity. Serum CTX-I levels decreased during the first 48 hours after each V injection (n = 3), and tended to increase again after 72 hours suggesting a partial recovery of osteoclast activity between each administration. Conclusions: Our results suggest that Bortezomib temporarily inhibits osteoclast activity in vitro and in vivo. This effect is linked to RANKL-induced translocation of NF-KB in the osteoclast nuclei and proteasome function. Since recent reports suggested that formation of new bone requires at least a transient activity of osteoclasts transient inhibition of osteoclasts could be an advantage compared to the more persistent inhibition of osteoclast activity by bisphosphonate.


2006 ◽  
Vol 00 (02) ◽  
Author(s):  
Harold N Rosen

There are many different treatment options for osteoporosis available to physicians. Most of these are designed to prevent and treat osteoporosis by inhibiting bone resorption and/or increasing bone formation. One group of patients with very specific needs is those with vertebral compression fractures especially in those whom the most commonly used treatment, bisphosphonate, is not well tolerated. Under these circumstances salmon calcitonin, a treatment that has known efficacy in reducing further vertebral fracture, an analgesic effect, and is known to be safe and well tolerated in older individuals, could be the answer.Salmon calcitonin is the most widely used of the calcitonins effective in humans. It has 40 times the affinity for osteoclasts as human calcitonin and is very effective at inhibiting bone resorption.1,2


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Marc N. Wein ◽  
Yanke Liang ◽  
Olga Goransson ◽  
Thomas B. Sundberg ◽  
Jinhua Wang ◽  
...  

Abstract Parathyroid hormone (PTH) activates receptors on osteocytes to orchestrate bone formation and resorption. Here we show that PTH inhibition of SOST (sclerostin), a WNT antagonist, requires HDAC4 and HDAC5, whereas PTH stimulation of RANKL, a stimulator of bone resorption, requires CRTC2. Salt inducible kinases (SIKs) control subcellular localization of HDAC4/5 and CRTC2. PTH regulates both HDAC4/5 and CRTC2 localization via phosphorylation and inhibition of SIK2. Like PTH, new small molecule SIK inhibitors cause decreased phosphorylation and increased nuclear translocation of HDAC4/5 and CRTC2. SIK inhibition mimics many of the effects of PTH in osteocytes as assessed by RNA-seq in cultured osteocytes and following in vivo administration. Once daily treatment with the small molecule SIK inhibitor YKL-05-099 increases bone formation and bone mass. Therefore, a major arm of PTH signalling in osteocytes involves SIK inhibition, and small molecule SIK inhibitors may be applied therapeutically to mimic skeletal effects of PTH.


Bone ◽  
2021 ◽  
Vol 143 ◽  
pp. 115635
Author(s):  
Katsutoshi Hirose ◽  
Takuya Ishimoto ◽  
Yu Usami ◽  
Sunao Sato ◽  
Kaori Oya ◽  
...  

Bone ◽  
2009 ◽  
Vol 44 ◽  
pp. S219 ◽  
Author(s):  
A. Sophocleous⁎ ◽  
E. Landao-Bassonga ◽  
R. van't Hof ◽  
S.H. Ralston ◽  
A.I. Idris

Sign in / Sign up

Export Citation Format

Share Document