scholarly journals Cross-correlation analysis of X-ray photon correlation spectroscopy to extract rotational diffusion coefficients

2021 ◽  
Vol 118 (34) ◽  
pp. e2105826118
Author(s):  
Zixi Hu ◽  
Jeffrey J. Donatelli ◽  
James A. Sethian

Coefficients for translational and rotational diffusion characterize the Brownian motion of particles. Emerging X-ray photon correlation spectroscopy (XPCS) experiments probe a broad range of length scales and time scales and are well-suited for investigation of Brownian motion. While methods for estimating the translational diffusion coefficients from XPCS are well-developed, there are no algorithms for measuring the rotational diffusion coefficients based on XPCS, even though the required raw data are accessible from such experiments. In this paper, we propose angular-temporal cross-correlation analysis of XPCS data and show that this information can be used to design a numerical algorithm (Multi-Tiered Estimation for Correlation Spectroscopy [MTECS]) for predicting the rotational diffusion coefficient utilizing the cross-correlation: This approach is applicable to other wavelengths beyond this regime. We verify the accuracy of this algorithmic approach across a range of simulated data.

1995 ◽  
Vol 75 (3) ◽  
pp. 449-452 ◽  
Author(s):  
S. B. Dierker ◽  
R. Pindak ◽  
R. M. Fleming ◽  
I. K. Robinson ◽  
L. Berman

1976 ◽  
Vol 9 (1) ◽  
pp. 83-107 ◽  
Author(s):  
L. De Maeyer ◽  
K. Gnädig ◽  
J. Hendrix ◽  
B. Saleh

In the initial period of application of photon correlation spectroscopy to molecular phenomena, attention has mainly been focused on the improvement of experimental approaches and instrumental techniques, on feasibility studies of certain cases where theoretical considerations seemed to indicate the prospective usefulness and on various applications that are relatively straightforward, such as the measurement of translational or rotational diffusion coefficients, or the determination of flow velocity by Doppler anemometry.


2021 ◽  
Vol 11 (13) ◽  
pp. 6179
Author(s):  
Felix Lehmkühler ◽  
Wojciech Roseker ◽  
Gerhard Grübel

X-ray photon correlation spectroscopy (XPCS) enables the study of sample dynamics between micrometer and atomic length scales. As a coherent scattering technique, it benefits from the increased brilliance of the next-generation synchrotron radiation and Free-Electron Laser (FEL) sources. In this article, we will introduce the XPCS concepts and review the latest developments of XPCS with special attention on the extension of accessible time scales to sub-μs and the application of XPCS at FELs. Furthermore, we will discuss future opportunities of XPCS and the related technique X-ray speckle visibility spectroscopy (XSVS) at new X-ray sources. Due to its particular signal-to-noise ratio, the time scales accessible by XPCS scale with the square of the coherent flux, allowing to dramatically extend its applications. This will soon enable studies over more than 18 orders of magnitude in time by XPCS and XSVS.


2020 ◽  
Vol 53 (19) ◽  
pp. 8233-8243
Author(s):  
Ronald M. Lewis ◽  
Grayson L. Jackson ◽  
Michael J. Maher ◽  
Kyungtae Kim ◽  
Suresh Narayanan ◽  
...  

2014 ◽  
Vol 2 ◽  
pp. 73-94 ◽  
Author(s):  
Markus Stana ◽  
Manuel Ross ◽  
Bogdan Sepiol

The new technique of atomic-scale X-ray Photon Correlation Spectroscopy (aXPCS) makesuse of a coherent X-ray beam to study the dynamics of various processes in condensed matter systems.Particularly atomistic migration mechanisms are still far from being understood in most of intermetallicalloys and in amorphous systems. Special emphasis must be given to the opportunity to measureatomistic diffusion at relatively low temperatures where such measurements were far out of reach withpreviously established methods. The importance of short-range order is demonstrated on the basis ofMonte Carlo simulations.


2018 ◽  
Vol 25 (4) ◽  
pp. 1135-1143 ◽  
Author(s):  
Faisal Khan ◽  
Suresh Narayanan ◽  
Roger Sersted ◽  
Nicholas Schwarz ◽  
Alec Sandy

Multi-speckle X-ray photon correlation spectroscopy (XPCS) is a powerful technique for characterizing the dynamic nature of complex materials over a range of time scales. XPCS has been successfully applied to study a wide range of systems. Recent developments in higher-frame-rate detectors, while aiding in the study of faster dynamical processes, creates large amounts of data that require parallel computational techniques to process in near real-time. Here, an implementation of the multi-tau and two-time autocorrelation algorithms using the Hadoop MapReduce framework for distributed computing is presented. The system scales well with regard to the increase in the data size, and has been serving the users of beamline 8-ID-I at the Advanced Photon Source for near real-time autocorrelations for the past five years.


2021 ◽  
Author(s):  
Wonhyuk Jo ◽  
Rustam Rysov ◽  
FABIAN WESTERMEIER ◽  
Michael Walther ◽  
Leonard Mueller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document