liquid phase separation
Recently Published Documents


TOTAL DOCUMENTS

1096
(FIVE YEARS 514)

H-INDEX

59
(FIVE YEARS 19)

2022 ◽  
Vol 201 ◽  
pp. 173-181
Author(s):  
Francesca Parolini ◽  
Roberto Tira ◽  
Carlo Giorgio Barracchia ◽  
Francesca Munari ◽  
Stefano Capaldi ◽  
...  

2022 ◽  
Author(s):  
Ewa Niedzialkowska ◽  
Tan M Truong ◽  
Luke A Eldredge ◽  
Stefanie Redemann ◽  
Denis Chretien ◽  
...  

The spindle midzone is a dynamic structure that forms during anaphase, mediates chromosome segregation, and provides a signaling platform to position the cleavage furrow. The spindle midzone comprises two antiparallel bundles of microtubules (MTs) but the process of their formation is poorly understood. Here, we show that the Chromosomal Passenger Complex (CPC) undergoes liquid-liquid phase separation (LLPS) to generate parallel MT bundles in vitro when incubated with free tubulin and GTP. MT bundles emerge from CPC droplets with protruding minus-ends that then grow into long, tapered MT structures. During this growth, the CPC in condensates apparently reorganize to coat and bundle the resulting MT structures. CPC mutants attenuated for LLPS or MT binding prevented the generation of parallel MT bundles in vitro and reduced the number of MTs present at spindle midzones in HeLa cells. Our data uncovers a kinase-independent function of the CPC and provides models for how cells generate parallel-bundled MT structures that are important for the assembly of the mitotic spindle.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0258876
Author(s):  
Carlos M. Roggero ◽  
Victoria Esser ◽  
Lingling Duan ◽  
Allyson M. Rice ◽  
Shihong Ma ◽  
...  

The androgen receptor (AR) plays a central role in prostate cancer. Development of castration resistant prostate cancer (CRPC) requires androgen-independent activation of AR, which involves its large N-terminal domain (NTD) and entails extensive epigenetic changes depending in part on histone lysine demethylases (KDMs) that interact with AR. The AR-NTD is rich in low-complexity sequences, including a polyQ repeat. Longer polyQ sequences were reported to decrease transcriptional activity and to protect against prostate cancer, although they can lead to muscular atrophy. However, the molecular mechanisms underlying these observations are unclear. Using NMR spectroscopy, here we identify weak interactions between the AR-NTD and the KDM4A catalytic domain, and between the AR ligand-binding domain and a central KDM4A region that also contains low-complexity sequences. We also show that the AR-NTD can undergo liquid-liquid phase separation in vitro, with longer polyQ sequences phase separating more readily. Moreover, longer polyQ sequences hinder nuclear localization in the absence of hormone and increase the propensity for formation of AR-containing puncta in the nucleus of cells treated with dihydrotestosterone. These results lead us to hypothesize that polyQ-dependent liquid-liquid phase separation may provide a mechanism to decrease the transcriptional activity of AR, potentially opening new opportunities to design effective therapies against CRPC and muscular atrophy.


Soft Matter ◽  
2022 ◽  
Author(s):  
Paul Pullara ◽  
Ibraheem Alshareedah ◽  
Priya Banerjee

Liquid-liquid phase separation (LLPS) of multivalent biopolymers is a ubiquitous process in biological systems and is of importance in bio-mimetic soft matter design. The phase behavior of biomolecules, such as...


2021 ◽  
Vol 12 ◽  
Author(s):  
Canhui Zheng ◽  
Xiumei Xu ◽  
Lixin Zhang ◽  
Dandan Lu

In higher plants, chloroplasts are vital organelles possessing highly complex compartmentalization. As most chloroplast-located proteins are encoded in the nucleus and synthesized in the cytosol, the correct sorting of these proteins to appropriate compartments is critical for the proper functions of chloroplasts as well as plant survival. Nuclear-encoded chloroplast proteins are imported into stroma and further sorted to distinct compartments via different pathways. The proteins predicted to be sorted to the thylakoid lumen by the chloroplast twin arginine transport (cpTAT) pathway are shown to be facilitated by STT1/2 driven liquid-liquid phase separation (LLPS). Liquid-liquid phase separation is a novel mechanism to facilitate the formation of membrane-less sub-cellular compartments and accelerate biochemical reactions temporally and spatially. In this review, we introduce the sorting mechanisms within chloroplasts, and briefly summarize the properties and significance of LLPS, with an emphasis on the novel function of LLPS in the sorting of cpTAT substrate proteins. We conclude with perspectives for the future research on chloroplast protein sorting and targeting mechanisms.


2021 ◽  
Author(s):  
ANUP PARCHURE ◽  
Meng Tian ◽  
Cierra K Boyer ◽  
Shelby C Bearrows ◽  
Kristen E Rohli ◽  
...  

Insulin is a key regulator of human metabolism, and its dysfunction leads to diseases such as type 2 diabetes. It remains unknown how proinsulin is targeted from the trans-Golgi network (TGN) to secretory storage granules as no cargo receptor has been identified. Chromogranin proteins (CGs) are central regulators of granule biosynthesis, and it was proposed that their aggregation is critical for this process. However, the molecular mechanism by which these molecules facilitate sorting at the TGN is poorly understood. Here, we show that CGs undergo liquid-liquid phase separation (LLPS) at low pH independently of divalent cations, such as calcium. Liquid CG condensates, but not aggregates, recruit and sort proinsulin and other granule destined cargo molecules towards secretory granules. Cargo selectivity is independent of sequence or structural elements but is based on the size and concentration of the client molecules at the TGN. Finally, electrostatic interactions and the N-terminal intrinsically disordered domain of chromogranin B facilitate LLPS and are critical for granule formation. We propose that phase-separated CGs act as a cargo sponge within the TGN lumen, gathering soluble client proteins into the condensate independently of specific sequence or structural elements, facilitating receptor-independent sorting. These findings challenge the canonical TGN sorting models and provide insights into granule biosynthesis in insulin-secreting beta cells.


Sign in / Sign up

Export Citation Format

Share Document